1. Developmental Biology
  2. Stem Cells and Regenerative Medicine
Download icon

RUNX1 marks a luminal castration resistant lineage established at the onset of prostate development

  1. Renaud Mevel
  2. Ivana Steiner
  3. Susan Mason
  4. Laura CA Galbraith
  5. Rahima Patel
  6. Muhammad ZH Fadlullah
  7. Imran Ahmad
  8. Hing Y Leung
  9. Pedro Oliveira
  10. Karen Blyth
  11. Esther Baena
  12. Georges Lacaud  Is a corresponding author
  1. Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom
  2. Cancer Research UK Beatson Institute, United Kingdom
  3. The Christie NHS Foundation Trust, United Kingdom
Research Article
  • Cited 0
  • Views 373
  • Annotations
Cite this article as: eLife 2020;9:e60225 doi: 10.7554/eLife.60225

Abstract

The characterization of prostate epithelial hierarchy and lineage heterogeneity is critical to understand its regenerative properties and malignancies. Here, we report that the transcription factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs), enriched in the periurethral region of the developing and adult mouse prostate, and distinct from the previously identified NKX3.1+ luminal castration resistant cells. Using scRNA-seq profiling and genetic lineage tracing, we show that RUNX1+ PLCs are unaffected by androgen deprivation, and do not contribute to the regeneration of the distal luminal compartments. Furthermore, we demonstrate that a transcriptionally similar RUNX1+ population emerges at the onset of embryonic prostate specification to populate the proximal region of the ducts. Collectively, our results reveal that RUNX1+ PLCs is an intrinsic castration-resistant and self-sustained lineage that emerges early during prostate development and provide new insights into the lineage relationships of the prostate epithelium.

Article and author information

Author details

  1. Renaud Mevel

    Stem Cell Biology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Ivana Steiner

    Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2744-1952
  3. Susan Mason

    Transgenic models of cancer, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura CA Galbraith

    Transgenic models of cancer, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Rahima Patel

    Stem Cell Biology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Muhammad ZH Fadlullah

    Stem Cell Biology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Imran Ahmad

    Models of advanced prostate cancer, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Hing Y Leung

    Urology Research Group, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Pedro Oliveira

    Department of Pathology, The Christie NHS Foundation Trust, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Karen Blyth

    Urology Research Group, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Esther Baena

    Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Georges Lacaud

    Stem Cell Biology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    For correspondence
    georges.lacaud@cruk.manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5630-2417

Funding

Cancer Research UK (C5759/A20971)

  • Esther Baena
  • Georges Lacaud

Cancer Research UK (C596/A17196)

  • Karen Blyth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were approved by the Animal Welfare and Ethics Review Body (AWERB) of the Cancer Research UK Manchester Institute and conducted according to the UK Home Office Project Licence (PPL 70/8580). Genetic lineage-tracing experiments were performed at the Beatson Biological Services Unit (PPL 70/8645 & P5EE22AEE) and approved by the University of Glasgow AWERB. Mice were maintained in purpose-built facility in a 12-hour light/dark cycle with continual access to food and water. All animal procedures were performed on adult males at least 7 weeks of age. Surgical castration was carried out under aseptic conditions.

Reviewing Editor

  1. Wilbert Zwart, Netherlands Cancer Institute, Netherlands

Publication history

  1. Received: June 20, 2020
  2. Accepted: October 6, 2020
  3. Accepted Manuscript published: October 7, 2020 (version 1)

Copyright

© 2020, Mevel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 373
    Page views
  • 62
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Graham Rykiel et al.
    Tools and Resources

    Cardiac pumping depends on the morphological structure of the heart, but also on its sub-cellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized ultrastructural disruptions that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three dimensional (3D) heart structure, to assess malformations; and its ultrastructure, to assess organelle disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). In a small animal model (chicken embryo), we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation on the same sample, enabling correlative multiscale imaging. Our approach enables multiscale studies in models of congenital heart disease and beyond.

    1. Developmental Biology
    Christian SM Helker et al.
    Research Article Updated

    To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, APELIN expression is regulated by Notch signaling in human ECs, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown zebrafish embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.