A statistical framework for assessing pharmacological response and biomarkers using uncertainty estimates

  1. Dennis Wang  Is a corresponding author
  2. James Hensman
  3. Ginte Kutkaite
  4. Tzen S Toh
  5. Ana Claudia Paulo Galhoz
  6. Jonathan R Dry
  7. Julio Saez-Rodriguez
  8. Mathew J Garnett
  9. Michael P Menden  Is a corresponding author
  10. Frank Dondelinger  Is a corresponding author
  1. University of Sheffield, United Kingdom
  2. PROWLER.io, United Kingdom
  3. Helmholtz Zentrum Muenchen, Germany
  4. AstraZeneca, United States
  5. Heidelberg University, Germany
  6. Wellcome Sanger Institute, United Kingdom
  7. Helmholtz Zentrum München, Germany
  8. Lancaster University, United Kingdom

Abstract

High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells' response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening data on 265 compounds across 1,074 cancer cell lines, our models identified 24 clinically established drug response biomarkers, and provided evidence for 6 novel biomarkers by accounting for association with low uncertainty. We validated our uncertainty estimates with an additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-response data without replicates, and improves biomarker discovery for precision medicine.

Data availability

All data is available through the GDSC downloads portal (ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases)Raw dose response data have been deposited in GDSC under v17a_public_raw_data.csvSigmoid fitted dose-response curves have been deposited in GDSC under v17_fitted_dose_response.csvCell line genomics data have been deposited in GDSC under GDSCtools_mobems.zipCell line identity details have been deposited in GDSC under Cell_Lines_Details.xlsxDrug compound details have been been deposited in GDSC under screened_compunds_rel_8.2.csv

Article and author information

Author details

  1. Dennis Wang

    Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    dennis.wang@sheffield.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0068-1005
  2. James Hensman

    PROWLER.io, Cambridge, United Kingdom
    Competing interests
    James Hensman, James Hensman is an employee of Amazon.com. The author has no competing financial interests to declare..
  3. Ginte Kutkaite

    Computational Biology, Helmholtz Zentrum Muenchen, Munich, Germany
    Competing interests
    No competing interests declared.
  4. Tzen S Toh

    The Medical School, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    No competing interests declared.
  5. Ana Claudia Paulo Galhoz

    Computational Biology, Helmholtz Zentrum Muenchen, Munich, Germany
    Competing interests
    No competing interests declared.
  6. Jonathan R Dry

    AstraZeneca, Boston, United States
    Competing interests
    Jonathan R Dry, Jonathan Dry is affiliated with AstraZeneca. The author has no competing financial interests to declare..
  7. Julio Saez-Rodriguez

    Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  8. Mathew J Garnett

    Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, United Kingdom
    Competing interests
    No competing interests declared.
  9. Michael P Menden

    Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
    For correspondence
    michael.menden@helmholtz-muenchen.de
    Competing interests
    No competing interests declared.
  10. Frank Dondelinger

    Lancaster University, Lancaster, United Kingdom
    For correspondence
    fdondelinger.work@gmail.com
    Competing interests
    Frank Dondelinger, Frank Dondelinger is an employee of Roche. The author has no competing financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1816-6300

Funding

NIHR Sheffield Biomedical Research Centre (BRC - IS-BRC-1215-20017)

  • Dennis Wang
  • Tzen S Toh

Rosetrees Trust (A2501)

  • Dennis Wang
  • Tzen S Toh

Academy of Medical Sciences (SBF004/1052)

  • Dennis Wang

Wellcome Trust (206194)

  • Mathew J Garnett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,916
    views
  • 339
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dennis Wang
  2. James Hensman
  3. Ginte Kutkaite
  4. Tzen S Toh
  5. Ana Claudia Paulo Galhoz
  6. Jonathan R Dry
  7. Julio Saez-Rodriguez
  8. Mathew J Garnett
  9. Michael P Menden
  10. Frank Dondelinger
(2020)
A statistical framework for assessing pharmacological response and biomarkers using uncertainty estimates
eLife 9:e60352.
https://doi.org/10.7554/eLife.60352

Share this article

https://doi.org/10.7554/eLife.60352

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.