A statistical framework for assessing pharmacological response and biomarkers using uncertainty estimates

  1. Dennis Wang  Is a corresponding author
  2. James Hensman
  3. Ginte Kutkaite
  4. Tzen S Toh
  5. Ana Claudia Paulo Galhoz
  6. Jonathan R Dry
  7. Julio Saez-Rodriguez
  8. Mathew J Garnett
  9. Michael P Menden  Is a corresponding author
  10. Frank Dondelinger  Is a corresponding author
  1. University of Sheffield, United Kingdom
  2. PROWLER.io, United Kingdom
  3. Helmholtz Zentrum Muenchen, Germany
  4. AstraZeneca, United States
  5. Heidelberg University, Germany
  6. Wellcome Sanger Institute, United Kingdom
  7. Helmholtz Zentrum München, Germany
  8. Lancaster University, United Kingdom

Abstract

High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells' response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening data on 265 compounds across 1,074 cancer cell lines, our models identified 24 clinically established drug response biomarkers, and provided evidence for 6 novel biomarkers by accounting for association with low uncertainty. We validated our uncertainty estimates with an additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-response data without replicates, and improves biomarker discovery for precision medicine.

Data availability

All data is available through the GDSC downloads portal (ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases)Raw dose response data have been deposited in GDSC under v17a_public_raw_data.csvSigmoid fitted dose-response curves have been deposited in GDSC under v17_fitted_dose_response.csvCell line genomics data have been deposited in GDSC under GDSCtools_mobems.zipCell line identity details have been deposited in GDSC under Cell_Lines_Details.xlsxDrug compound details have been been deposited in GDSC under screened_compunds_rel_8.2.csv

Article and author information

Author details

  1. Dennis Wang

    Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    dennis.wang@sheffield.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0068-1005
  2. James Hensman

    PROWLER.io, Cambridge, United Kingdom
    Competing interests
    James Hensman, James Hensman is an employee of Amazon.com. The author has no competing financial interests to declare..
  3. Ginte Kutkaite

    Computational Biology, Helmholtz Zentrum Muenchen, Munich, Germany
    Competing interests
    No competing interests declared.
  4. Tzen S Toh

    The Medical School, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    No competing interests declared.
  5. Ana Claudia Paulo Galhoz

    Computational Biology, Helmholtz Zentrum Muenchen, Munich, Germany
    Competing interests
    No competing interests declared.
  6. Jonathan R Dry

    AstraZeneca, Boston, United States
    Competing interests
    Jonathan R Dry, Jonathan Dry is affiliated with AstraZeneca. The author has no competing financial interests to declare..
  7. Julio Saez-Rodriguez

    Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  8. Mathew J Garnett

    Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, United Kingdom
    Competing interests
    No competing interests declared.
  9. Michael P Menden

    Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
    For correspondence
    michael.menden@helmholtz-muenchen.de
    Competing interests
    No competing interests declared.
  10. Frank Dondelinger

    Lancaster University, Lancaster, United Kingdom
    For correspondence
    fdondelinger.work@gmail.com
    Competing interests
    Frank Dondelinger, Frank Dondelinger is an employee of Roche. The author has no competing financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1816-6300

Funding

NIHR Sheffield Biomedical Research Centre (BRC - IS-BRC-1215-20017)

  • Dennis Wang
  • Tzen S Toh

Rosetrees Trust (A2501)

  • Dennis Wang
  • Tzen S Toh

Academy of Medical Sciences (SBF004/1052)

  • Dennis Wang

Wellcome Trust (206194)

  • Mathew J Garnett

European Union's Horizon 2020 Research and Innovation Programme (Grant agreement No. 950293 - COMBAT-RES)

  • Michael P Menden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph Lehár, Boston University, United States

Version history

  1. Received: June 24, 2020
  2. Accepted: December 4, 2020
  3. Accepted Manuscript published: December 4, 2020 (version 1)
  4. Accepted Manuscript updated: December 7, 2020 (version 2)
  5. Version of Record published: December 17, 2020 (version 3)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,645
    views
  • 306
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dennis Wang
  2. James Hensman
  3. Ginte Kutkaite
  4. Tzen S Toh
  5. Ana Claudia Paulo Galhoz
  6. Jonathan R Dry
  7. Julio Saez-Rodriguez
  8. Mathew J Garnett
  9. Michael P Menden
  10. Frank Dondelinger
(2020)
A statistical framework for assessing pharmacological response and biomarkers using uncertainty estimates
eLife 9:e60352.
https://doi.org/10.7554/eLife.60352

Share this article

https://doi.org/10.7554/eLife.60352

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Richard Sejour, Janet Leatherwood ... Bruce Futcher
    Research Article

    Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive consequence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve translation.

    1. Computational and Systems Biology
    Hedi Chen, Xiaoyu Fan ... Boxue Tian
    Research Article

    Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSD between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody–antigen interactions. This structural prediction tool can be used to optimize antibody–antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.