1. Evolutionary Biology
  2. Genetics and Genomics
Download icon

The effect of hybridization on transposable element accumulation in an undomesticated fungal species

Research Article
  • Cited 2
  • Views 1,346
  • Annotations
Cite this article as: eLife 2020;9:e60474 doi: 10.7554/eLife.60474

Abstract

Transposable elements (TEs) are mobile genetic elements that can profoundly impact the evolution of genomes and species. A long-standing hypothesis suggests that hybridization could deregulate TEs and trigger their accumulation, although it received mixed support from studies in plants and animals. Here, we tested this hypothesis in fungi using incipient species of the undomesticated yeast Saccharomyces paradoxus. Population genomic data revealed no signature of higher transposition in natural hybrids. As we could not rule out the elimination of past transposition increase signatures by natural selection, we performed a laboratory evolution experiment on a panel of artificial hybrids to measure TE accumulation in the near absence of selection. Changes in TE copy numbers were not predicted by the level of evolutionary divergence between the parents of a hybrid genotype. Rather, they were highly dependent on the individual hybrid genotypes, showing that strong genotype-specific deterministic factors govern TE accumulation in yeast hybrids.

Article and author information

Author details

  1. Mathieu Hénault

    Département de biochimie, microbiologie et bio-informatique, Département de biologie, PROTEO, BDRC_UL, Université Laval, Québec, Canada
    For correspondence
    mathieu.henault.1@ulaval.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0760-7545
  2. Souhir Marsit

    Département de biochimie, microbiologie et bio-informatique, PROTEO, BDRC_UL, Université Laval, Québec, Canada
    Competing interests
    No competing interests declared.
  3. Guillaume Charron

    Département de biologie, PROTEO, BDRC_UL, Université Laval, Québec, Canada
    Competing interests
    No competing interests declared.
  4. Christian R Landry

    Département de biologie, Université Laval, Québec, Canada
    Competing interests
    Christian R Landry, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3028-6866

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2015-03755)

  • Christian R Landry

Natural Sciences and Engineering Research Council of Canada (NSERC Alexander Graham-Bell doctoral scholarship)

  • Mathieu Hénault
  • Guillaume Charron

Fonds de recherche du Québec – Nature et technologies (FRQNT doctoral scholarship)

  • Mathieu Hénault
  • Guillaume Charron

Fonds de Recherche du Québec - Santé (FRQS postdoctoral scholarship)

  • Souhir Marsit

Canada Research Chairs (Canada Research Chair in Evolutionary Cell and Systems Biology)

  • Christian R Landry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kevin J Verstrepen, VIB-KU Leuven Center for Microbiology, Belgium

Publication history

  1. Received: June 27, 2020
  2. Accepted: September 21, 2020
  3. Accepted Manuscript published: September 21, 2020 (version 1)
  4. Version of Record published: October 23, 2020 (version 2)

Copyright

© 2020, Hénault et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,346
    Page views
  • 163
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Rachel A Johnston et al.
    Research Article

    In some mammals and many social insects, highly cooperative societies are characterized by reproductive division of labor, in which breeders and nonbreeders become behaviorally and morphologically distinct. While differences in behavior and growth between breeders and nonbreeders have been extensively described, little is known of their molecular underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding 'queen' status versus nonbreeder status to age-matched littermates, we confirm that queens experience vertebral growth that likely confers advantages to fecundity. However, they also up-regulate bone resorption pathways and show reductions in femoral mass, which predicts increased vulnerability to fracture. Together, our results show that, as in eusocial insects, reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by costs to bone strength.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Paloma Diaz-Maroto et al.
    Research Article Updated

    The study of South American camelids and their domestication is a highly debated topic in zooarchaeology. Identifying the domestic species (alpaca and llama) in archaeological sites based solely on morphological data is challenging due to their similarity with respect to their wild ancestors. Using genetic methods also presents challenges due to the hybridization history of the domestic species, which are thought to have extensively hybridized following the Spanish conquest of South America that resulted in camelids slaughtered en masse. In this study, we generated mitochondrial genomes for 61 ancient South American camelids dated between 3,500 and 2,400 years before the present (Early Formative period) from two archaeological sites in Northern Chile (Tulán-54 and Tulán-85), as well as 66 modern camelid mitogenomes and 815 modern mitochondrial control region sequences from across South America. In addition, we performed osteometric analyses to differentiate big and small body size camelids. A comparative analysis of these data suggests that a substantial proportion of the ancient vicuña genetic variation has been lost since the Early Formative period, as it is not present in modern specimens. Moreover, we propose a domestication hypothesis that includes an ancient guanaco population that no longer exists. Finally, we find evidence that interbreeding practices were widespread during the domestication process by the early camelid herders in the Atacama during the Early Formative period and predating the Spanish conquest.