Plexin-B2 controls the timing of differentiation and the motility of cerebellar granule neurons

  1. Eljo Van Battum
  2. Celine Heitz-Marchaland
  3. Yvrick Zagar
  4. Stéphane Fouquet
  5. Rohini Kuner
  6. Alain Chédotal  Is a corresponding author
  1. Institut de la Vision, France
  2. Universität Heidelberg, Germany
  3. Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, France

Abstract

Plexin-B2 deletion leads to aberrant lamination of cerebellar granule neurons (CGNs) and Purkinje cells. Although in the cerebellum Plexin-B2 is only expressed by proliferating CGN precursors in the outer external granule layer (oEGL), its function in CGN development is still elusive. Here, we used 3D imaging, in vivo electroporation and live-imaging techniques to study CGN development in novel cerebellum-specific Plxnb2 conditional knockout mice. We show that proliferating CGNs in Plxnb2 mutants not only escape the oEGL and mix with newborn postmitotic CGNs. Furthermore, motility of mitotic precursors and early postmitotic CGNs is altered. Together, this leads to the formation of ectopic patches of CGNs at the cerebellar surface and an intermingling of normally time-stamped parallel fibers in the molecular layer (ML), and aberrant arborization of Purkinje cell dendrites. There results suggest that Plexin-B2 restricts CGN motility and might have a function in cytokinesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Eljo Van Battum

    Department of Development, Institut de la Vision, Paris, France
    Competing interests
    No competing interests declared.
  2. Celine Heitz-Marchaland

    Department of Development, Institut de la Vision, Paris, France
    Competing interests
    No competing interests declared.
  3. Yvrick Zagar

    Department of Development, Institut de la Vision, Paris, France
    Competing interests
    No competing interests declared.
  4. Stéphane Fouquet

    Department of Development, Institut de la Vision, Paris, France
    Competing interests
    No competing interests declared.
  5. Rohini Kuner

    Department of Pharmacology, Universität Heidelberg, Heidelberg, Germany
    Competing interests
    Rohini Kuner, Reviewing editor, eLife.
  6. Alain Chédotal

    Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    For correspondence
    alain.chedotal@inserm.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7577-3794

Funding

Agence Nationale de la Recherche (ANR-18-IAHU-01)

  • Alain Chédotal

Fondation pour la Recherche Médicale (CS 2018)

  • Alain Chédotal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: All animal housing, handling and experimental procedures were carried out in accordance to institutional guidelines, approved by the Sorbonne University ethic committee (Charles Darwin, permit 03787.02).

Version history

  1. Received: June 29, 2020
  2. Accepted: June 7, 2021
  3. Accepted Manuscript published: June 8, 2021 (version 1)
  4. Version of Record published: June 17, 2021 (version 2)

Copyright

© 2021, Van Battum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,786
    Page views
  • 218
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eljo Van Battum
  2. Celine Heitz-Marchaland
  3. Yvrick Zagar
  4. Stéphane Fouquet
  5. Rohini Kuner
  6. Alain Chédotal
(2021)
Plexin-B2 controls the timing of differentiation and the motility of cerebellar granule neurons
eLife 10:e60554.
https://doi.org/10.7554/eLife.60554

Share this article

https://doi.org/10.7554/eLife.60554

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.