Abstract

The nucleus of higher eukaryotes is a highly compartmentalized and dynamic organelle consisting of several biomolecular condensates that regulate gene expression at multiple levels (Banani et al., 2017; Shin and Brangwynne, 2017). First reported more than 100 years ago by Ramón y Cajal, nuclear speckles (NS) are among the most prominent of such condensates (Spector and Lamond, 2011). Despite their prevalence, research on the function of NS is virtually restricted to colocalization analyses, since an organizing core, without which NS cannot form, remains unidentified (Chen and Belmont, 2019; Galganski et al., 2017). The monoclonal antibody SC35, which was raised against a spliceosomal extract, is a frequently used reagent to mark NS since its debut in 1990 (Fu and Maniatis, 1990). Unexpectedly, we found that this antibody has been misidentified and the main target of SC35 mAb is SRRM2, a large (~300 kDa), spliceosome-associated (Jia and Sun, 2018) protein with prominent intrinsically disordered regions (IDRs) that sharply localizes to NS (Blencowe et al., 1994). Here we show that, the core of NS is likely formed by SON and SRRM2, since depletion of SON leads only to a partial disassembly of NS as reported previously (Ahn et al., 2011; Fei et al., 2017; Sharma et al., 2010), in contrast, combined depletion of SON together with SRRM2, but not other NS associated factors, or depletion of SON in a cell line where IDRs of SRRM2 are genetically deleted, leads to a near-complete dissolution of NS. This work, therefore, paves the way to study the role of NS under diverse physiological and stress conditions.

Data availability

All data generated or analysed during this study are included in the manuscript and Supplementary files and source data files.Mass Spectrometry results shown in Figure 1 and Figure1- figure supplement 1 are provided in Supplementary File 2.Furthermore, on ProteomeXchange with identifier PXD021814.Source data files have been provided for Figure 4, Figure 4 - figure supplement1 and 2; and Figures 5, Figure 5 - figure supplement 3 and 4 .These zipped files contain ilastik models, CellProfiler pipelines, results and Jupyter notebooks.

The following data sets were generated

Article and author information

Author details

  1. İbrahim Avşar Ilik

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Michal Malszycki

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Katharina Lübke

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudia Schade

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. David Meierhofer

    Mass Spectrometry, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0170-868X
  6. Tuğçe Aktaş

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    For correspondence
    aktas@molgen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1599-9454

Funding

Max Planck Research Group Leader Program

  • Tuğçe Aktaş

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ilik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,282
    views
  • 1,501
    downloads
  • 158
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. İbrahim Avşar Ilik
  2. Michal Malszycki
  3. Anna Katharina Lübke
  4. Claudia Schade
  5. David Meierhofer
  6. Tuğçe Aktaş
(2020)
SON and SRRM2 are essential for nuclear speckle formation
eLife 9:e60579.
https://doi.org/10.7554/eLife.60579

Share this article

https://doi.org/10.7554/eLife.60579

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.