Abstract

The nucleus of higher eukaryotes is a highly compartmentalized and dynamic organelle consisting of several biomolecular condensates that regulate gene expression at multiple levels (Banani et al., 2017; Shin and Brangwynne, 2017). First reported more than 100 years ago by Ramón y Cajal, nuclear speckles (NS) are among the most prominent of such condensates (Spector and Lamond, 2011). Despite their prevalence, research on the function of NS is virtually restricted to colocalization analyses, since an organizing core, without which NS cannot form, remains unidentified (Chen and Belmont, 2019; Galganski et al., 2017). The monoclonal antibody SC35, which was raised against a spliceosomal extract, is a frequently used reagent to mark NS since its debut in 1990 (Fu and Maniatis, 1990). Unexpectedly, we found that this antibody has been misidentified and the main target of SC35 mAb is SRRM2, a large (~300 kDa), spliceosome-associated (Jia and Sun, 2018) protein with prominent intrinsically disordered regions (IDRs) that sharply localizes to NS (Blencowe et al., 1994). Here we show that, the core of NS is likely formed by SON and SRRM2, since depletion of SON leads only to a partial disassembly of NS as reported previously (Ahn et al., 2011; Fei et al., 2017; Sharma et al., 2010), in contrast, combined depletion of SON together with SRRM2, but not other NS associated factors, or depletion of SON in a cell line where IDRs of SRRM2 are genetically deleted, leads to a near-complete dissolution of NS. This work, therefore, paves the way to study the role of NS under diverse physiological and stress conditions.

Data availability

All data generated or analysed during this study are included in the manuscript and Supplementary files and source data files.Mass Spectrometry results shown in Figure 1 and Figure1- figure supplement 1 are provided in Supplementary File 2.Furthermore, on ProteomeXchange with identifier PXD021814.Source data files have been provided for Figure 4, Figure 4 - figure supplement1 and 2; and Figures 5, Figure 5 - figure supplement 3 and 4 .These zipped files contain ilastik models, CellProfiler pipelines, results and Jupyter notebooks.

The following data sets were generated

Article and author information

Author details

  1. İbrahim Avşar Ilik

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Michal Malszycki

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Katharina Lübke

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudia Schade

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. David Meierhofer

    Mass Spectrometry, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0170-868X
  6. Tuğçe Aktaş

    Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
    For correspondence
    aktas@molgen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1599-9454

Funding

Max Planck Research Group Leader Program

  • Tuğçe Aktaş

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan P Staley, University of Chicago, United States

Version history

  1. Received: June 30, 2020
  2. Accepted: October 20, 2020
  3. Accepted Manuscript published: October 23, 2020 (version 1)
  4. Version of Record published: November 17, 2020 (version 2)

Copyright

© 2020, Ilik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,535
    views
  • 1,291
    downloads
  • 123
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. İbrahim Avşar Ilik
  2. Michal Malszycki
  3. Anna Katharina Lübke
  4. Claudia Schade
  5. David Meierhofer
  6. Tuğçe Aktaş
(2020)
SON and SRRM2 are essential for nuclear speckle formation
eLife 9:e60579.
https://doi.org/10.7554/eLife.60579

Share this article

https://doi.org/10.7554/eLife.60579

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.