MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut

Abstract

Bacteriophages play important roles in regulating the intestinal human microbiota composition, dynamics and homeostasis, and characterizing their bacterial hosts is needed to understand their impact. We applied a metagenomic Hi-C approach on 10 healthy human gut samples to unveil a large infection network encompassing more than 6,000 interactions bridging a metagenomic assembled genomes (MAGs) and a phage sequence, allowing to study in situ phage-host ratio. Whereas three-quarter of these sequences likely correspond to dormant prophages, 5% exhibit a much higher coverage than their associated MAG, representing potentially actively replicating phages. We detected 17 sequences of members of the crAss-like phage family, whose hosts diversity remained until recently relatively elusive. For each of them, a unique bacterial host was identified, all belonging to different genus of Bacteroidetes. Therefore, metaHiC deciphers infection network of microbial population with a high-specificity paving the way to dynamic analysis of mobile genetic elements in complex ecosystems.

Data availability

Sequence data (raw reads, assemblies) have been deposited in the NCBI Sequence Read Archive under the BioProject number PRJNA627086.Code and additional data on MAGs, Bins, Contigs and Phages can be found at the following address https://github.com/mmarbout/HGP-Hi-C.

The following data sets were generated

Article and author information

Author details

  1. Martial Marbouty

    Département Génomes et Génétique, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
    For correspondence
    martial.marbouty@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Agnès Thierry

    Département Génomes et Génétique, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Gaël A Millot

    Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Romain Koszul

    Département Génomes et Génétique, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
    For correspondence
    romain.koszul@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3086-1173

Funding

European Research Council (771813)

  • Romain Koszul

Agence Nationale pour la Recherche (ANR-16-JPEC-0003-05)

  • Romain Koszul

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The work involved feces samples of healthy human individuals, stored in the Institut Pasteur biobanque (library). This research receives the ethical agreement n{degree sign}N18 from Institut Pasteur (ICAReB), and through this process we dont need informed consent from the individual donors.

Copyright

© 2021, Marbouty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,354
    views
  • 636
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martial Marbouty
  2. Agnès Thierry
  3. Gaël A Millot
  4. Romain Koszul
(2021)
MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut
eLife 10:e60608.
https://doi.org/10.7554/eLife.60608

Share this article

https://doi.org/10.7554/eLife.60608

Further reading

    1. Microbiology and Infectious Disease
    Maneesh Kumar Singh, Victoria Ann Bonnell ... Celia RS Garcia
    Research Article

    Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Michael B Hall, Ryan R Wick ... Lachlan Coin
    Research Article

    Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accuracy of Illumina sequencing, especially when applied to ONT’s super-high accuracy model. ONT’s superior performance is attributed to its ability to overcome Illumina’s errors, which often arise from difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of high-performing variant callers with ONT’s super-high accuracy data mitigates ONT’s traditional errors in homopolymers. We also investigated the impact of read depth on variant calling, demonstrating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT sequencing, combined with advanced variant calling algorithms, to replace traditional short-read sequencing methods in bacterial genomics, particularly in resource-limited settings.