Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity

  1. Mark Shaaya
  2. Jordan Fauser
  3. Anastasia Zhurikhina
  4. Jason E Conage-Pough
  5. Vincent Huyot
  6. Martin Brennan
  7. Cameron T Flower
  8. Jacob Matsche
  9. Shazeb Khan
  10. Viswanathan Natarajan
  11. Jalees Rehman
  12. Pradeep Kota
  13. Forest M White
  14. Denis Tsygankov
  15. Andrei V Karginov  Is a corresponding author
  1. University of Illinois at Chicago, United States
  2. Georgia Institute of Technology and Emory University School of Medicine, United States
  3. Massachusetts Institute of Technology, United States
  4. University of North Carolina, United States
  5. Koch Institute for Integrative Cancer Research at MIT, United States

Abstract

Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.

Data availability

The raw mass spectrometry data and associated tables have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier: PXD018162. All data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Mark Shaaya

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jordan Fauser

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anastasia Zhurikhina

    Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason E Conage-Pough

    The David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1614-9374
  5. Vincent Huyot

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Brennan

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cameron T Flower

    The David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9632-9913
  8. Jacob Matsche

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shazeb Khan

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Viswanathan Natarajan

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jalees Rehman

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2787-9292
  12. Pradeep Kota

    Department of Medicine, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Forest M White

    Biological Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1545-1651
  14. Denis Tsygankov

    Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1180-3584
  15. Andrei V Karginov

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    For correspondence
    karginov@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2370-6383

Funding

National Institutes of Health (R21CA212907)

  • Jordan Fauser

National Institutes of Health (CA238720)

  • Forest M White

Chicago Biomedical Consortium

  • Andrei V Karginov

Army Research Office (W911NF-17-1-0395)

  • Denis Tsygankov

National Institutes of Health (R21CA159179)

  • Andrei V Karginov

National Institutes of Health (R01GM118582)

  • Andrei V Karginov

National Institutes of Health (R21CA223915)

  • Jalees Rehman
  • Andrei V Karginov

National Institutes of Health (HL007829-22)

  • Mark Shaaya
  • Jordan Fauser
  • Martin Brennan

National Institutes of Health (P01 HL060678)

  • Viswanathan Natarajan
  • Jalees Rehman
  • Andrei V Karginov

National Institutes of Health (CA210180)

  • Forest M White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Shaaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,319
    views
  • 679
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark Shaaya
  2. Jordan Fauser
  3. Anastasia Zhurikhina
  4. Jason E Conage-Pough
  5. Vincent Huyot
  6. Martin Brennan
  7. Cameron T Flower
  8. Jacob Matsche
  9. Shazeb Khan
  10. Viswanathan Natarajan
  11. Jalees Rehman
  12. Pradeep Kota
  13. Forest M White
  14. Denis Tsygankov
  15. Andrei V Karginov
(2020)
Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity
eLife 9:e60647.
https://doi.org/10.7554/eLife.60647

Share this article

https://doi.org/10.7554/eLife.60647

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.