Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity

  1. Mark Shaaya
  2. Jordan Fauser
  3. Anastasia Zhurikhina
  4. Jason E Conage-Pough
  5. Vincent Huyot
  6. Martin Brennan
  7. Cameron T Flower
  8. Jacob Matsche
  9. Shazeb Khan
  10. Viswanathan Natarajan
  11. Jalees Rehman
  12. Pradeep Kota
  13. Forest M White
  14. Denis Tsygankov
  15. Andrei V Karginov  Is a corresponding author
  1. University of Illinois at Chicago, United States
  2. Georgia Institute of Technology and Emory University School of Medicine, United States
  3. Massachusetts Institute of Technology, United States
  4. University of North Carolina, United States
  5. Koch Institute for Integrative Cancer Research at MIT, United States

Abstract

Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.

Data availability

The raw mass spectrometry data and associated tables have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier: PXD018162. All data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Mark Shaaya

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jordan Fauser

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anastasia Zhurikhina

    Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason E Conage-Pough

    The David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1614-9374
  5. Vincent Huyot

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Brennan

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cameron T Flower

    The David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9632-9913
  8. Jacob Matsche

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shazeb Khan

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Viswanathan Natarajan

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jalees Rehman

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2787-9292
  12. Pradeep Kota

    Department of Medicine, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Forest M White

    Biological Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1545-1651
  14. Denis Tsygankov

    Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1180-3584
  15. Andrei V Karginov

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    For correspondence
    karginov@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2370-6383

Funding

National Institutes of Health (R21CA212907)

  • Jordan Fauser

National Institutes of Health (CA238720)

  • Forest M White

Chicago Biomedical Consortium

  • Andrei V Karginov

Army Research Office (W911NF-17-1-0395)

  • Denis Tsygankov

National Institutes of Health (R21CA159179)

  • Andrei V Karginov

National Institutes of Health (R01GM118582)

  • Andrei V Karginov

National Institutes of Health (R21CA223915)

  • Jalees Rehman
  • Andrei V Karginov

National Institutes of Health (HL007829-22)

  • Mark Shaaya
  • Jordan Fauser
  • Martin Brennan

National Institutes of Health (P01 HL060678)

  • Viswanathan Natarajan
  • Jalees Rehman
  • Andrei V Karginov

National Institutes of Health (CA210180)

  • Forest M White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Luis F Larrondo, Pontificia Universidad Católica de Chile, Chile

Publication history

  1. Received: July 2, 2020
  2. Accepted: September 22, 2020
  3. Accepted Manuscript published: September 23, 2020 (version 1)
  4. Accepted Manuscript updated: September 24, 2020 (version 2)
  5. Version of Record published: October 21, 2020 (version 3)
  6. Version of Record updated: November 11, 2020 (version 4)

Copyright

© 2020, Shaaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,104
    Page views
  • 560
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark Shaaya
  2. Jordan Fauser
  3. Anastasia Zhurikhina
  4. Jason E Conage-Pough
  5. Vincent Huyot
  6. Martin Brennan
  7. Cameron T Flower
  8. Jacob Matsche
  9. Shazeb Khan
  10. Viswanathan Natarajan
  11. Jalees Rehman
  12. Pradeep Kota
  13. Forest M White
  14. Denis Tsygankov
  15. Andrei V Karginov
(2020)
Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity
eLife 9:e60647.
https://doi.org/10.7554/eLife.60647

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Abhinay Ramaprasad, Paul-Christian Burda ... Michael J Blackman
    Research Article Updated

    The malaria parasite Plasmodium falciparum synthesizes significant amounts of phospholipids to meet the demands of replication within red blood cells. De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway is essential, requiring choline that is primarily sourced from host serum lysophosphatidylcholine (lysoPC). LysoPC also acts as an environmental sensor to regulate parasite sexual differentiation. Despite these critical roles for host lysoPC, the enzyme(s) involved in its breakdown to free choline for PC synthesis are unknown. Here, we show that a parasite glycerophosphodiesterase (PfGDPD) is indispensable for blood stage parasite proliferation. Exogenous choline rescues growth of PfGDPD-null parasites, directly linking PfGDPD function to choline incorporation. Genetic ablation of PfGDPD reduces choline uptake from lysoPC, resulting in depletion of several PC species in the parasite, whilst purified PfGDPD releases choline from glycerophosphocholine in vitro. Our results identify PfGDPD as a choline-releasing glycerophosphodiesterase that mediates a critical step in PC biosynthesis and parasite survival.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jiemin Shen, Azaan Saalim Wilbon ... Yaping Pan
    Research Article Updated

    Ferroportin (Fpn) is a transporter that releases ferrous ion (Fe2+) from cells and is important for homeostasis of iron in circulation. Export of one Fe2+ by Fpn is coupled to import of two H+ to maintain charge balance. Here, we show that human Fpn (HsFpn) binds to and mediates Ca2+ transport. We determine the structure of Ca2+-bound HsFpn and identify a single Ca2+ binding site distinct from the Fe2+ binding sites. Further studies validate the Ca2+ binding site and show that Ca2+ transport is not coupled to transport of another ion. In addition, Ca2+ transport is significantly inhibited in the presence of Fe2+ but not vice versa. Function of Fpn as a Ca2+ uniporter may allow regulation of iron homeostasis by Ca2+.