Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity

  1. Mark Shaaya
  2. Jordan Fauser
  3. Anastasia Zhurikhina
  4. Jason E Conage-Pough
  5. Vincent Huyot
  6. Martin Brennan
  7. Cameron T Flower
  8. Jacob Matsche
  9. Shahzeb Khan
  10. Viswanathan Natarajan
  11. Jalees Rehman
  12. Pradeep Kota
  13. Forest M White
  14. Denis Tsygankov
  15. Andrei V Karginov  Is a corresponding author
  1. University of Illinois at Chicago, United States
  2. Georgia Institute of Technology and Emory University School of Medicine, United States
  3. Massachusetts Institute of Technology, United States
  4. University of North Carolina, United States
  5. Koch Institute for Integrative Cancer Research at MIT, United States

Abstract

Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.

Data availability

The raw mass spectrometry data and associated tables have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier: PXD018162. All data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Mark Shaaya

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jordan Fauser

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anastasia Zhurikhina

    Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason E Conage-Pough

    The David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1614-9374
  5. Vincent Huyot

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Brennan

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cameron T Flower

    The David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9632-9913
  8. Jacob Matsche

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shahzeb Khan

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Viswanathan Natarajan

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jalees Rehman

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2787-9292
  12. Pradeep Kota

    Department of Medicine, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Forest M White

    Biological Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1545-1651
  14. Denis Tsygankov

    Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1180-3584
  15. Andrei V Karginov

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    For correspondence
    karginov@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2370-6383

Funding

National Institutes of Health (R21CA212907)

  • Jordan Fauser

National Institutes of Health (CA238720)

  • Forest M White

Chicago Biomedical Consortium

  • Andrei V Karginov

Army Research Office (W911NF-17-1-0395)

  • Denis Tsygankov

National Institutes of Health (R21CA159179)

  • Andrei V Karginov

National Institutes of Health (R01GM118582)

  • Andrei V Karginov

National Institutes of Health (R21CA223915)

  • Jalees Rehman
  • Andrei V Karginov

National Institutes of Health (HL007829-22)

  • Mark Shaaya
  • Jordan Fauser
  • Martin Brennan

National Institutes of Health (P01 HL060678)

  • Viswanathan Natarajan
  • Jalees Rehman
  • Andrei V Karginov

National Institutes of Health (CA210180)

  • Forest M White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Luis F Larrondo, Pontificia Universidad Católica de Chile, Chile

Version history

  1. Received: July 2, 2020
  2. Accepted: September 22, 2020
  3. Accepted Manuscript published: September 23, 2020 (version 1)
  4. Accepted Manuscript updated: September 24, 2020 (version 2)
  5. Version of Record published: October 21, 2020 (version 3)
  6. Version of Record updated: November 11, 2020 (version 4)

Copyright

© 2020, Shaaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,959
    views
  • 657
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark Shaaya
  2. Jordan Fauser
  3. Anastasia Zhurikhina
  4. Jason E Conage-Pough
  5. Vincent Huyot
  6. Martin Brennan
  7. Cameron T Flower
  8. Jacob Matsche
  9. Shahzeb Khan
  10. Viswanathan Natarajan
  11. Jalees Rehman
  12. Pradeep Kota
  13. Forest M White
  14. Denis Tsygankov
  15. Andrei V Karginov
(2020)
Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity
eLife 9:e60647.
https://doi.org/10.7554/eLife.60647

Share this article

https://doi.org/10.7554/eLife.60647

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.