Spreading of a mycobacterial cell surface lipid into host epithelial membranes promotes infectivity

  1. CJ Cambier
  2. Steven M Banik
  3. Joseph A Buonomo
  4. Carolyn R Bertozzi  Is a corresponding author
  1. Stanford University, United States

Abstract

Several virulence lipids populate the outer cell wall of pathogenic mycobacteria (Jackson, 2014). Phthiocerol dimycocerosate (PDIM), one of the most abundant outer membrane lipids (Anderson, 1929), plays important roles in both defending against host antimicrobial programs (Camacho et al., 2001; Cox et al., 1999; Murry et al., 2009) and in evading these programs altogether (Cambier et al., 2014a; Rousseau et al., 2004). Immediately following infection, mycobacteria rely on PDIM to evade Myd88-dependent recruitment of microbicidal monocytes which can clear infection (Cambier et al., 2014b). To circumvent the limitations in using genetics to understand virulence lipids, we developed a chemical approach to track PDIM during Mycobacterium marinum infection of zebrafish. We found that PDIM's methyl-branched lipid tails enabled it to spread into host epithelial membranes to prevent immune activation. Additionally, PDIM's affinity for cholesterol promoted this phenotype; treatment of zebrafish with statins, cholesterol synthesis inhibitors, decreased spreading and provided protection from infection. This work establishes that interactions between host and pathogen lipids influence mycobacterial infectivity and suggests the use of statins as tuberculosis preventive therapy by inhibiting PDIM spread.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. CJ Cambier

    Department of Chemistry, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0300-7377
  2. Steven M Banik

    Department of Chemistry, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7070-3404
  3. Joseph A Buonomo

    Department of Chemistry, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Carolyn R Bertozzi

    Department of Chemistry, Stanford University, Stanford, United States
    For correspondence
    bertozzi@stanford.edu
    Competing interests
    Carolyn R Bertozzi, C.R.B. is a co-founder of OliLux Bio, Palleon Pharmaceuticals, InverVenn Bio, Enable Biosciences, and Lycia Therapeutics, and member of the Board of Directors of Eli Lilly..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4482-2754

Funding

National Institutes of Health (AI51622)

  • Carolyn R Bertozzi

Damon Runyon Cancer Research Foundation (Postdoctoral Fellowship)

  • CJ Cambier

National Institutes of Health (F32)

  • Steven M Banik
  • Joseph A Buonomo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments performed on zebrafish were in compliance with the U.S. National Institutes of Health guidelines. All animals were handled according to approved Stanford Institutional Animal Care and Use Committee protocol APLAC-30262.

Copyright

© 2020, Cambier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,493
    views
  • 580
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. CJ Cambier
  2. Steven M Banik
  3. Joseph A Buonomo
  4. Carolyn R Bertozzi
(2020)
Spreading of a mycobacterial cell surface lipid into host epithelial membranes promotes infectivity
eLife 9:e60648.
https://doi.org/10.7554/eLife.60648

Share this article

https://doi.org/10.7554/eLife.60648

Further reading

    1. Biochemistry and Chemical Biology
    Yingjie Sun, Changheng Li ... Youngnam N Jin
    Research Article

    Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug–protein interactions, such as those with transient protein complexes and membrane-associated proteins. To address these limitations, we developed POST-IT (Pup-On-target for Small molecule Target Identification Technology), a non-diffusive proximity tagging system for live cells, orthogonal to the eukaryotic system. POST-IT utilizes an engineered fusion of proteasomal accessory factor A and HaloTag to transfer Pup to proximal proteins upon directly binding to the small molecule. After significant optimization to eliminate self-pupylation and polypupylation, minimize depupylation, and optimize chemical linkers, POST-IT successfully identified known targets and discovered a new binder, SEPHS2, for dasatinib, and VPS37C as a new target for hydroxychloroquine, enhancing our understanding these drugs’ mechanisms of action. Furthermore, we demonstrated the application of POST-IT in live zebrafish embryos, highlighting its potential for broad biological research and drug development.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Raji E Joseph, Thomas E Wales ... Amy H Andreotti
    Research Advance

    Inhibition of Bruton’s tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph et al., 2020). Here, we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.