Crash landing of Vibrio cholerae by MSHA pili-assisted braking and anchoring in a viscoelastic environment

  1. Wenchao Zhang
  2. Mei Luo
  3. Chunying Feng
  4. Huaqing Liu
  5. Hong Zhang
  6. Rachel R Bennett  Is a corresponding author
  7. Andrew S Utada  Is a corresponding author
  8. Zhi Liu  Is a corresponding author
  9. Kun Zhao  Is a corresponding author
  1. Tianjin University, China
  2. Huazhong University of Science and Technology, China
  3. University of Bristol, United Kingdom
  4. University of Tsukuba, Japan

Abstract

Mannose-sensitive hemagglutinin (MSHA) pili and flagellum are critical for the surface attachment of Vibrio cholerae, the first step of V. cholerae colonization on host surfaces. However, the cell landing mechanism remains largely unknown, particularly in viscoelastic environments such as the mucus layers of intestines. Here, combining the cysteine-substitution-based labelling method with single-cell tracking techniques, we quantitatively characterized the landing of V. cholerae by directly observing both pili and flagellum of cells in a viscoelastic non-Newtonian solution consisting of 2% Luria-Bertani and 1% methylcellulose (LB+MC). The results show that MSHA pili are evenly distributed along the cell length and can stick to surfaces at any point along the filament. With such properties, MSHA pili are observed to act as a brake and anchor during cell landing which include three phases: running, lingering, and attaching. Importantly, loss of MSHA pili results in a more dramatic increase in mean path length in LB+MC than in 2% LB only or in 20% Ficoll solutions, indicating that the role of MSHA pili during cell landing is more apparent in viscoelastic non-Newtonian fluids than viscous Newtonian ones. Our work provides a detailed picture of the landing dynamics of V. cholerae under viscoelastic conditions, which can provide insights into ways to better control V. cholerae infections in real mucus-like environment.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-6.

Article and author information

Author details

  1. Wenchao Zhang

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Mei Luo

    Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chunying Feng

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Huaqing Liu

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Hong Zhang

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel R Bennett

    School of Mathematics, University of Bristol, Bristol, United Kingdom
    For correspondence
    rachel.bennett@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6409-6967
  7. Andrew S Utada

    Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
    For correspondence
    utada.andrew.gm@u.tsukuba.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4542-6315
  8. Zhi Liu

    Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    zhiliu@hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Kun Zhao

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    For correspondence
    kunzhao@tju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3928-1981

Funding

National Key R and D Program of China (2018YFA0902102)

  • Kun Zhao

National Natural Science Foundation of China (31770132)

  • Zhi Liu

National Natural Science Foundation of China (81572050)

  • Zhi Liu

National Natural Science Foundation of China (21621004)

  • Kun Zhao

University of Bristol (Vice-Chancellor's Fellowship)

  • Rachel R Bennett

Grant in aid for Young Scientists (17K15410)

  • Andrew S Utada

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice received the humane care and the experimental protocols were carried out in accordance with the Guide for the Care and Use of Laboratory Animals, Huazhong University of Science and Technology, as approved by the Animal Care Committee of Hubei Province.

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,475
    views
  • 221
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenchao Zhang
  2. Mei Luo
  3. Chunying Feng
  4. Huaqing Liu
  5. Hong Zhang
  6. Rachel R Bennett
  7. Andrew S Utada
  8. Zhi Liu
  9. Kun Zhao
(2021)
Crash landing of Vibrio cholerae by MSHA pili-assisted braking and anchoring in a viscoelastic environment
eLife 10:e60655.
https://doi.org/10.7554/eLife.60655

Share this article

https://doi.org/10.7554/eLife.60655

Further reading

    1. Microbiology and Infectious Disease
    2. Neuroscience
    Aleksandra Prochera, Anoohya N Muppirala ... Meenakshi Rao
    Research Article

    Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions (Prochera and Rao, 2023). To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express the gene Proteolipid protein 1 (PLP1) in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.

    1. Microbiology and Infectious Disease
    Carley N Gray, Manickam Ashokkumar ... Michael Emerman
    Research Article

    The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout, suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.