Crash landing of Vibrio cholerae by MSHA pili-assisted braking and anchoring in a viscoelastic environment

  1. Wenchao Zhang
  2. Mei Luo
  3. Chunying Feng
  4. Huaqing Liu
  5. Hong Zhang
  6. Rachel R Bennett  Is a corresponding author
  7. Andrew S Utada  Is a corresponding author
  8. Zhi Liu  Is a corresponding author
  9. Kun Zhao  Is a corresponding author
  1. Tianjin University, China
  2. Huazhong University of Science and Technology, China
  3. University of Bristol, United Kingdom
  4. University of Tsukuba, Japan

Abstract

Mannose-sensitive hemagglutinin (MSHA) pili and flagellum are critical for the surface attachment of Vibrio cholerae, the first step of V. cholerae colonization on host surfaces. However, the cell landing mechanism remains largely unknown, particularly in viscoelastic environments such as the mucus layers of intestines. Here, combining the cysteine-substitution-based labelling method with single-cell tracking techniques, we quantitatively characterized the landing of V. cholerae by directly observing both pili and flagellum of cells in a viscoelastic non-Newtonian solution consisting of 2% Luria-Bertani and 1% methylcellulose (LB+MC). The results show that MSHA pili are evenly distributed along the cell length and can stick to surfaces at any point along the filament. With such properties, MSHA pili are observed to act as a brake and anchor during cell landing which include three phases: running, lingering, and attaching. Importantly, loss of MSHA pili results in a more dramatic increase in mean path length in LB+MC than in 2% LB only or in 20% Ficoll solutions, indicating that the role of MSHA pili during cell landing is more apparent in viscoelastic non-Newtonian fluids than viscous Newtonian ones. Our work provides a detailed picture of the landing dynamics of V. cholerae under viscoelastic conditions, which can provide insights into ways to better control V. cholerae infections in real mucus-like environment.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-6.

Article and author information

Author details

  1. Wenchao Zhang

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Mei Luo

    Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chunying Feng

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Huaqing Liu

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Hong Zhang

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel R Bennett

    School of Mathematics, University of Bristol, Bristol, United Kingdom
    For correspondence
    rachel.bennett@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6409-6967
  7. Andrew S Utada

    Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
    For correspondence
    utada.andrew.gm@u.tsukuba.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4542-6315
  8. Zhi Liu

    Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    zhiliu@hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Kun Zhao

    Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
    For correspondence
    kunzhao@tju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3928-1981

Funding

National Key R and D Program of China (2018YFA0902102)

  • Kun Zhao

National Natural Science Foundation of China (31770132)

  • Zhi Liu

National Natural Science Foundation of China (81572050)

  • Zhi Liu

National Natural Science Foundation of China (21621004)

  • Kun Zhao

University of Bristol (Vice-Chancellor's Fellowship)

  • Rachel R Bennett

Grant in aid for Young Scientists (17K15410)

  • Andrew S Utada

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice received the humane care and the experimental protocols were carried out in accordance with the Guide for the Care and Use of Laboratory Animals, Huazhong University of Science and Technology, as approved by the Animal Care Committee of Hubei Province.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: July 2, 2020
  2. Accepted: July 1, 2021
  3. Accepted Manuscript published: July 2, 2021 (version 1)
  4. Version of Record published: July 15, 2021 (version 2)

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 990
    Page views
  • 155
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenchao Zhang
  2. Mei Luo
  3. Chunying Feng
  4. Huaqing Liu
  5. Hong Zhang
  6. Rachel R Bennett
  7. Andrew S Utada
  8. Zhi Liu
  9. Kun Zhao
(2021)
Crash landing of Vibrio cholerae by MSHA pili-assisted braking and anchoring in a viscoelastic environment
eLife 10:e60655.
https://doi.org/10.7554/eLife.60655

Further reading

    1. Developmental Biology
    2. Microbiology and Infectious Disease
    Théodore Grenier, Jessika Consuegra ... François Leulier
    Research Article

    Symbiotic bacteria interact with their host through symbiotic cues. Here, we took advantage of the mutualism between Drosophila and Lactiplantibacillus plantarum (Lp) to investigate a novel mechanism of host-symbiont interaction. Using chemically-defined diets, we found that association with Lp improves the growth of larvae fed amino acid-imbalanced diets, even though Lp cannot produce the limiting amino acid. We show that in this context Lp supports its host's growth through a molecular dialog that requires functional operons encoding ribosomal and transfer RNAs (r/tRNAs) in Lp and the GCN2 kinase in Drosophila's enterocytes. Our data indicate Lp's r/tRNAs are packaged in extracellular vesicles and activate GCN2 in a subset of larval enterocytes, a mechanism necessary to remodel the intestinal transcriptome and ultimately to support anabolic growth. Based on our findings, we propose a novel beneficial molecular dialog between host and microbes, which relies on a non-canonical role of GCN2 as a mediator of non-nutritional symbiotic cues encoded by r/tRNA operons.

    1. Microbiology and Infectious Disease
    Yuanyuan Wang, Yinhe Mao ... Changbin Chen
    Research Article Updated

    The transition metal iron plays a crucial role in living cells. However, high levels of iron are potentially toxic through the production of reactive oxygen species (ROS), serving as a deterrent to the commensal fungus Candida albicans for colonization in the iron-rich gastrointestinal tract. We observe that the mutant lacking an iron-responsive transcription factor Hap43 is hyper-fit for colonization in murine gut. We demonstrate that high iron specifically triggers multiple post-translational modifications and proteasomal degradation of Hap43, a vital process guaranteeing the precision of intestinal ROS detoxification. Reduced levels of Hap43 de-repress the expression of antioxidant genes and therefore alleviate the deleterious ROS derived from iron metabolism. Our data reveal that Hap43 functions as a negative regulator for oxidative stress adaptation of C. albicans to gut colonization and thereby provide a new insight into understanding the interplay between iron homeostasis and fungal commensalism.