Mutational analysis to explore long-range allosteric couplings involved in a pentameric channel receptor pre-activation and activation

  1. Solène N Lefebvre
  2. Antoine Taly  Is a corresponding author
  3. Anaïs Menny
  4. Karima Medjebeur
  5. Pierre-Jean Corringer  Is a corresponding author
  1. Institut Pasteur, France
  2. Institut de Biologie Physico-chimique, France
  3. Imperial College London, United Kingdom

Abstract

Pentameric ligand-gated ion channels (pLGICs) mediate chemical signaling through a succession of allosteric transitions that are yet not completely understood as intermediate states remain poorly characterized by structural approaches. In a previous study on the prototypic bacterial proton-gated channel GLIC, we generated several fluorescent sensors of the protein conformation that report a fast transition to a pre-active state, which precedes the slower process of activation with pore opening. Here, we explored the phenotype of a series of allosteric mutations, using paralleled steady-state fluorescence and electrophysiological measurements over a broad pH range. Our data, fitted to a 3-states Monod-Wyman-Changeux (MWC) model, show that mutations at the subunit interface in the extracellular domain (ECD) principally alter pre-activation, while mutations in the lower ECD and in the transmembrane domain principally alter activation. We also show that propofol alters both transitions. Data are discussed in the framework of transition pathways generated by normal mode analysis (iModFit) that suggest collective protein motions concerted with pore opening. It further supports that pre-activation involves major quaternary compaction of the ECD, and suggests that activation involves principally a re-organization of a 'central gating region' involving a contraction of the ECD β-sandwich and the tilt of the channel lining M2 helix.

Data availability

Table 1 included in the manuscript correspond to a summary table for figures 4 to 8.

Article and author information

Author details

  1. Solène N Lefebvre

    Neuroscience Department, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1333-2042
  2. Antoine Taly

    Institut de Biologie Physico-chimique, Paris, France
    For correspondence
    antoine.taly@ibpc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5109-0091
  3. Anaïs Menny

    Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6044-4119
  4. Karima Medjebeur

    Neuroscience Department, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre-Jean Corringer

    Neuroscience Department, Institut Pasteur, Paris, France
    For correspondence
    pjcorrin@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4770-430X

Funding

Agence Nationale de la Recherche (ANR-13-BSV-0020)

  • Solène N Lefebvre
  • Anaïs Menny
  • Karima Medjebeur
  • Pierre-Jean Corringer

Agence Nationale de la Recherche (ANR-11-LABX-0011)

  • Antoine Taly

European Research Council (grant No. 788974)

  • Pierre-Jean Corringer

Sorbonne University - Doctoral school ED3C (PhD fellowship)

  • Solène N Lefebvre

Fondation pour la Recherche Médicale (PhD fellowship complement)

  • Solène N Lefebvre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Cynthia M Czajkowski, University of Wisconsin, Madison, United States

Version history

  1. Received: July 2, 2020
  2. Preprint posted: July 4, 2020 (view preprint)
  3. Accepted: September 29, 2021
  4. Accepted Manuscript published: September 30, 2021 (version 1)
  5. Version of Record published: October 11, 2021 (version 2)

Copyright

© 2021, Lefebvre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 820
    views
  • 153
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Solène N Lefebvre
  2. Antoine Taly
  3. Anaïs Menny
  4. Karima Medjebeur
  5. Pierre-Jean Corringer
(2021)
Mutational analysis to explore long-range allosteric couplings involved in a pentameric channel receptor pre-activation and activation
eLife 10:e60682.
https://doi.org/10.7554/eLife.60682

Share this article

https://doi.org/10.7554/eLife.60682

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.