Mutational analysis to explore long-range allosteric couplings involved in a pentameric channel receptor pre-activation and activation

  1. Solène N Lefebvre
  2. Antoine Taly  Is a corresponding author
  3. Anaïs Menny
  4. Karima Medjebeur
  5. Pierre-Jean Corringer  Is a corresponding author
  1. Institut Pasteur, France
  2. Institut de Biologie Physico-chimique, France
  3. Imperial College London, United Kingdom

Abstract

Pentameric ligand-gated ion channels (pLGICs) mediate chemical signaling through a succession of allosteric transitions that are yet not completely understood as intermediate states remain poorly characterized by structural approaches. In a previous study on the prototypic bacterial proton-gated channel GLIC, we generated several fluorescent sensors of the protein conformation that report a fast transition to a pre-active state, which precedes the slower process of activation with pore opening. Here, we explored the phenotype of a series of allosteric mutations, using paralleled steady-state fluorescence and electrophysiological measurements over a broad pH range. Our data, fitted to a 3-states Monod-Wyman-Changeux (MWC) model, show that mutations at the subunit interface in the extracellular domain (ECD) principally alter pre-activation, while mutations in the lower ECD and in the transmembrane domain principally alter activation. We also show that propofol alters both transitions. Data are discussed in the framework of transition pathways generated by normal mode analysis (iModFit) that suggest collective protein motions concerted with pore opening. It further supports that pre-activation involves major quaternary compaction of the ECD, and suggests that activation involves principally a re-organization of a 'central gating region' involving a contraction of the ECD β-sandwich and the tilt of the channel lining M2 helix.

Data availability

Table 1 included in the manuscript correspond to a summary table for figures 4 to 8.

Article and author information

Author details

  1. Solène N Lefebvre

    Neuroscience Department, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1333-2042
  2. Antoine Taly

    Institut de Biologie Physico-chimique, Paris, France
    For correspondence
    antoine.taly@ibpc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5109-0091
  3. Anaïs Menny

    Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6044-4119
  4. Karima Medjebeur

    Neuroscience Department, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre-Jean Corringer

    Neuroscience Department, Institut Pasteur, Paris, France
    For correspondence
    pjcorrin@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4770-430X

Funding

Agence Nationale de la Recherche (ANR-13-BSV-0020)

  • Solène N Lefebvre
  • Anaïs Menny
  • Karima Medjebeur
  • Pierre-Jean Corringer

Agence Nationale de la Recherche (ANR-11-LABX-0011)

  • Antoine Taly

European Research Council (grant No. 788974)

  • Pierre-Jean Corringer

Sorbonne University - Doctoral school ED3C (PhD fellowship)

  • Solène N Lefebvre

Fondation pour la Recherche Médicale (PhD fellowship complement)

  • Solène N Lefebvre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Lefebvre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 867
    views
  • 158
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Solène N Lefebvre
  2. Antoine Taly
  3. Anaïs Menny
  4. Karima Medjebeur
  5. Pierre-Jean Corringer
(2021)
Mutational analysis to explore long-range allosteric couplings involved in a pentameric channel receptor pre-activation and activation
eLife 10:e60682.
https://doi.org/10.7554/eLife.60682

Share this article

https://doi.org/10.7554/eLife.60682

Further reading

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.

    1. Neuroscience
    Nico A Flierman, Sue Ann Koay ... Chris I De Zeeuw
    Research Article

    The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.