The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus

  1. Kodaji Ha
  2. Mai Nobuhara
  3. Qinzhe Wang
  4. Rebecca V Walker
  5. Feng Qian
  6. Christoph Schartner
  7. Erhu Cao
  8. Markus Delling  Is a corresponding author
  1. University of California, San Francisco, United States
  2. University of Utah, United States
  3. University of Maryland School of Medicine, United States

Abstract

Mutations in the polycystin proteins, PC-1 and PC-2, result in autosomal dominant polycystic kidney disease (ADPKD) and ultimately renal failure. PC-1 and PC-2 enrich on primary cilia, where they are thought to form a heteromeric ion channel complex. However, a functional understanding of the putative PC-1/PC-2 polycystin complex is lacking due to technical hurdles in reliably measuring its activity. Here, we successfully reconstitute the PC-1/PC-2 complex in the plasma membrane of mammalian cells and show that it functions as an outwardly rectifying channel. Using both reconstituted and ciliary polycystin channels, we further show that a soluble fragment generated from the N-terminal extracellular domain of PC-1 functions as an intrinsic agonist that is necessary and sufficient for channel activation. We thus propose that autoproteolytic cleavage of the N-terminus of PC-1, a hotspot for ADPKD mutations, produces a soluble ligand in vivo. These findings establish a mechanistic framework for understanding the role of PC-1/PC-2 heteromers in ADPKD and suggest new therapeutic strategies that would expand upon the limited symptomatic treatments currently available for this progressive, terminal disease.

Data availability

Previously published data from PDB was used, available under the accession code 6A70.All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Kodaji Ha

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mai Nobuhara

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qinzhe Wang

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rebecca V Walker

    Medicine, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2473-4303
  5. Feng Qian

    Medicine, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christoph Schartner

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Erhu Cao

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Markus Delling

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    markus.delling@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9556-2097

Funding

National Institute of General Medical Sciences (R01GM130908)

  • Markus Delling

Fritz Thyssen Stiftung

  • Markus Delling

National Research Foundation of Korea (2019R1A6A3A03033302)

  • Kodaji Ha

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK111611)

  • Feng Qian

National Institute of Diabetes and Digestive and Kidney Diseases (U54DK126114)

  • Feng Qian

NIH Research Project Grant (DK110575)

  • Erhu Cao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Polina V Lishko, University of California, Berkeley, United States

Version history

  1. Received: July 2, 2020
  2. Accepted: November 6, 2020
  3. Accepted Manuscript published: November 9, 2020 (version 1)
  4. Accepted Manuscript updated: November 12, 2020 (version 2)
  5. Version of Record published: December 10, 2020 (version 3)

Copyright

© 2020, Ha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,468
    views
  • 731
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kodaji Ha
  2. Mai Nobuhara
  3. Qinzhe Wang
  4. Rebecca V Walker
  5. Feng Qian
  6. Christoph Schartner
  7. Erhu Cao
  8. Markus Delling
(2020)
The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus
eLife 9:e60684.
https://doi.org/10.7554/eLife.60684

Share this article

https://doi.org/10.7554/eLife.60684

Further reading

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signaling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor-1. Overall, we implicate CYRI-B as a mediator of growth and signaling in pancreatic cancer, providing new insights into pathways controlling metastasis.