Abstract

HIV-1 must replicate in cells that are equipped to defend themselves from infection through intracellular innate immune systems. HIV-1 evades innate immune sensing through encapsidated DNA synthesis and encodes accessory genes that antagonize specific antiviral effectors. Here we show that both particle associated, and expressed HIV-1 Vpr, antagonize the stimulatory effect of a variety of pathogen associated molecular patterns by inhibiting IRF3 and NF-κB nuclear transport. Phosphorylation of IRF3 at S396, but not S386, was also inhibited. We propose that, rather than promoting HIV-1 nuclear import, Vpr interacts with karyopherins to disturb their import of IRF3 and NF-κB to promote replication in macrophages. Concordantly, we demonstrate Vpr dependent rescue of HIV-1 replication in human macrophages from inhibition by cGAMP, the product of activated cGAS. We propose a model that unifies Vpr manipulation of nuclear import and inhibition of innate immune activation to promote HIV-1 replication and transmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Greg J Towers

    Infection and Immunity, University College London, London, United Kingdom
    For correspondence
    g.towers@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7707-0264
  2. Hataf Khan

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Rebecca P Sumner

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Jane Rasaiyaah

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Choon Ping Tan

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  6. Maria Teresa Rodriguez Plata

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    Maria Teresa Rodriguez Plata, Maria Teresa Rodriguez-Plata is affiliated with Black Belt TX Ltd. The author has no financial interests to declare..
  7. Chris Van Tulleken

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Douglas Fink

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Lorena Zuliani-Alvarez

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4682-4043
  10. Lucy Thorne

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  11. David Stirling

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  12. Richard S B Milne

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.

Funding

Wellcome Trust (Senior Biomedical Research Fellowship)

  • Greg J Towers

H2020 European Research Council (Advanced Grant HIVinnate)

  • Greg J Towers

Medical Research Council (PhD studentship)

  • Hataf Khan

Medical Research Council (Clinical training fellowship)

  • Chris Van Tulleken

Wellcome Trust (Collaborative Award)

  • Greg J Towers

national institute of health research (University College London Hospitals Biomedical Research Centre)

  • Greg J Towers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John W Schoggins, University of Texas Southwestern Medical Center, United States

Ethics

Human subjects: This study was approved by the UCL/UCLH Committees on the Ethics of Human Research, Committee Alpha reference (06/Q0502/92). All participants provided written informed consent and consent for publication.

Version history

  1. Received: July 7, 2020
  2. Accepted: December 9, 2020
  3. Accepted Manuscript published: December 10, 2020 (version 1)
  4. Accepted Manuscript updated: December 12, 2020 (version 2)
  5. Version of Record published: December 24, 2020 (version 3)

Copyright

© 2020, Towers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,573
    views
  • 367
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Greg J Towers
  2. Hataf Khan
  3. Rebecca P Sumner
  4. Jane Rasaiyaah
  5. Choon Ping Tan
  6. Maria Teresa Rodriguez Plata
  7. Chris Van Tulleken
  8. Douglas Fink
  9. Lorena Zuliani-Alvarez
  10. Lucy Thorne
  11. David Stirling
  12. Richard S B Milne
(2020)
HIV-1 Vpr antagonizes innate immune activation by targeting karyopherin-mediated NF- κB/IRF3 nuclear transport
eLife 9:e60821.
https://doi.org/10.7554/eLife.60821

Share this article

https://doi.org/10.7554/eLife.60821

Further reading

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article Updated

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

    1. Microbiology and Infectious Disease
    Magdalena Podkowik, Andrew I Perault ... Bo Shopsin
    Research Article

    The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived ‘memory’ of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb−/−) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.