Abstract

HIV-1 must replicate in cells that are equipped to defend themselves from infection through intracellular innate immune systems. HIV-1 evades innate immune sensing through encapsidated DNA synthesis and encodes accessory genes that antagonize specific antiviral effectors. Here we show that both particle associated, and expressed HIV-1 Vpr, antagonize the stimulatory effect of a variety of pathogen associated molecular patterns by inhibiting IRF3 and NF-κB nuclear transport. Phosphorylation of IRF3 at S396, but not S386, was also inhibited. We propose that, rather than promoting HIV-1 nuclear import, Vpr interacts with karyopherins to disturb their import of IRF3 and NF-κB to promote replication in macrophages. Concordantly, we demonstrate Vpr dependent rescue of HIV-1 replication in human macrophages from inhibition by cGAMP, the product of activated cGAS. We propose a model that unifies Vpr manipulation of nuclear import and inhibition of innate immune activation to promote HIV-1 replication and transmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Greg J Towers

    Infection and Immunity, University College London, London, United Kingdom
    For correspondence
    g.towers@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7707-0264
  2. Hataf Khan

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Rebecca P Sumner

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Jane Rasaiyaah

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Choon Ping Tan

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  6. Maria Teresa Rodriguez Plata

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    Maria Teresa Rodriguez Plata, Maria Teresa Rodriguez-Plata is affiliated with Black Belt TX Ltd. The author has no financial interests to declare..
  7. Chris Van Tulleken

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Douglas Fink

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Lorena Zuliani-Alvarez

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4682-4043
  10. Lucy Thorne

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  11. David Stirling

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  12. Richard S B Milne

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.

Funding

Wellcome Trust (Senior Biomedical Research Fellowship)

  • Greg J Towers

H2020 European Research Council (Advanced Grant HIVinnate)

  • Greg J Towers

Medical Research Council (PhD studentship)

  • Hataf Khan

Medical Research Council (Clinical training fellowship)

  • Chris Van Tulleken

Wellcome Trust (Collaborative Award)

  • Greg J Towers

national institute of health research (University College London Hospitals Biomedical Research Centre)

  • Greg J Towers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the UCL/UCLH Committees on the Ethics of Human Research, Committee Alpha reference (06/Q0502/92). All participants provided written informed consent and consent for publication.

Copyright

© 2020, Towers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,766
    views
  • 391
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Greg J Towers
  2. Hataf Khan
  3. Rebecca P Sumner
  4. Jane Rasaiyaah
  5. Choon Ping Tan
  6. Maria Teresa Rodriguez Plata
  7. Chris Van Tulleken
  8. Douglas Fink
  9. Lorena Zuliani-Alvarez
  10. Lucy Thorne
  11. David Stirling
  12. Richard S B Milne
(2020)
HIV-1 Vpr antagonizes innate immune activation by targeting karyopherin-mediated NF- κB/IRF3 nuclear transport
eLife 9:e60821.
https://doi.org/10.7554/eLife.60821

Share this article

https://doi.org/10.7554/eLife.60821

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.

    1. Microbiology and Infectious Disease
    Julia A Hotinger, Ian W Campbell ... Matthew K Waldor
    Research Article

    Murine models are often used to study the pathogenicity and dissemination of the enteric pathogen Salmonella enterica serovar Typhimurium. Here, we quantified S. Typhimurium population dynamics in mice using the STAMPR analytic pipeline and a highly diverse S. Typhimurium barcoded library containing ~55,000 unique strains distinguishable by genomic barcodes by enumerating S. Typhimurium founding populations and deciphering routes of spread in mice. We found that a severe bottleneck allowed only one in a million cells from an oral inoculum to establish a niche in the intestine. Furthermore, we observed compartmentalization of pathogen populations throughout the intestine, with few barcodes shared between intestinal segments and feces. This severe bottleneck widened and compartmentalization was reduced after streptomycin treatment, suggesting the microbiota plays a key role in restricting the pathogen’s colonization and movement within the intestine. Additionally, there was minimal sharing between the intestine and extraintestinal organ populations, indicating dissemination to extraintestinal sites occurs rapidly, before substantial pathogen expansion in the intestine. Bypassing the intestinal bottleneck by inoculating mice via intravenous or intraperitoneal injection revealed that Salmonella re-enters the intestine after establishing niches in extraintestinal sites by at least two distinct pathways. One pathway results in a diverse intestinal population. The other re-seeding pathway is through the bile, where the pathogen is often clonal, leading to clonal intestinal populations and correlates with gallbladder pathology. Together, these findings deepen our understanding of Salmonella population dynamics.