Abstract

HIV-1 must replicate in cells that are equipped to defend themselves from infection through intracellular innate immune systems. HIV-1 evades innate immune sensing through encapsidated DNA synthesis and encodes accessory genes that antagonize specific antiviral effectors. Here we show that both particle associated, and expressed HIV-1 Vpr, antagonize the stimulatory effect of a variety of pathogen associated molecular patterns by inhibiting IRF3 and NF-κB nuclear transport. Phosphorylation of IRF3 at S396, but not S386, was also inhibited. We propose that, rather than promoting HIV-1 nuclear import, Vpr interacts with karyopherins to disturb their import of IRF3 and NF-κB to promote replication in macrophages. Concordantly, we demonstrate Vpr dependent rescue of HIV-1 replication in human macrophages from inhibition by cGAMP, the product of activated cGAS. We propose a model that unifies Vpr manipulation of nuclear import and inhibition of innate immune activation to promote HIV-1 replication and transmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hataf Khan

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Rebecca P Sumner

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Jane Rasaiyaah

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Choon Ping Tan

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Maria Teresa Rodriguez-Plata

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    Maria Teresa Rodriguez-Plata, Maria Teresa Rodriguez-Plata is affiliated with Black Belt TX Ltd. The author has no financial interests to declare..
  6. Chris Van Tulleken

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Douglas Fink

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Lorena Zuliani-Alvarez

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4682-4043
  9. Lucy Thorne

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  10. David Stirling

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  11. Richard S B Milne

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  12. Greg J Towers

    Infection and Immunity, University College London, London, United Kingdom
    For correspondence
    g.towers@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7707-0264

Funding

Wellcome Trust (Senior Biomedical Research Fellowship)

  • Greg J Towers

H2020 European Research Council (Advanced Grant HIVinnate)

  • Greg J Towers

Medical Research Council (PhD studentship)

  • Hataf Khan

Medical Research Council (Clinical training fellowship)

  • Chris Van Tulleken

Wellcome Trust (Collaborative Award)

  • Greg J Towers

National Institute of Health Research (University College London Hospitals Biomedical Research Centre)

  • Greg J Towers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the UCL/UCLH Committees on the Ethics of Human Research, Committee Alpha reference (06/Q0502/92). All participants provided written informed consent and consent for publication.

Copyright

© 2020, Khan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,729
    views
  • 386
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hataf Khan
  2. Rebecca P Sumner
  3. Jane Rasaiyaah
  4. Choon Ping Tan
  5. Maria Teresa Rodriguez-Plata
  6. Chris Van Tulleken
  7. Douglas Fink
  8. Lorena Zuliani-Alvarez
  9. Lucy Thorne
  10. David Stirling
  11. Richard S B Milne
  12. Greg J Towers
(2020)
HIV-1 Vpr antagonizes innate immune activation by targeting karyopherin-mediated NF- κB/IRF3 nuclear transport
eLife 9:e60821.
https://doi.org/10.7554/eLife.60821

Share this article

https://doi.org/10.7554/eLife.60821

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Amanda Mixon Blackwell, Yasaman Jami-Alahmadi ... Paul A Sigala
    Research Article

    Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.

    1. Microbiology and Infectious Disease
    Francesca Torelli, Diogo M da Fonseca ... Moritz Treeck
    Research Article

    Toxoplasma gondii is an intracellular parasite that subverts host cell functions via secreted virulence factors. Up to 70% of parasite-controlled changes in the host transcriptome rely on the MYR1 protein, which is required for the translocation of secreted proteins into the host cell. Mice infected with MYR1 knock-out (KO) strains survive infection, supporting a paramount function of MYR1-dependent secreted proteins in Toxoplasma virulence and proliferation. However, we have previously shown that MYR1 mutants have no growth defect in pooled in vivo CRISPR-Cas9 screens in mice, suggesting that the presence of parasites that are wild-type at the myr1 locus in pooled screens can rescue the phenotype. Here, we demonstrate that MYR1 is not required for the survival in IFN-γ-activated murine macrophages, and that parasites lacking MYR1 are able to expand during the onset of infection. While ΔMYR1 parasites have restricted growth in single-strain murine infections, we show that the phenotype is rescued by co-infection with wild-type (WT) parasites in vivo, independent of host functional adaptive immunity or key pro-inflammatory cytokines. These data show that the major function of MYR1-dependent secreted proteins is not to protect the parasite from clearance within infected cells. Instead, MYR-dependent proteins generate a permissive niche in a paracrine manner, which rescues ΔMYR1 parasites within a pool of CRISPR mutants in mice. Our results highlight an important limitation of otherwise powerful in vivo CRISPR screens and point towards key functions for MYR1-dependent Toxoplasma-host interactions beyond the infected cell.