Abstract

HIV-1 must replicate in cells that are equipped to defend themselves from infection through intracellular innate immune systems. HIV-1 evades innate immune sensing through encapsidated DNA synthesis and encodes accessory genes that antagonize specific antiviral effectors. Here we show that both particle associated, and expressed HIV-1 Vpr, antagonize the stimulatory effect of a variety of pathogen associated molecular patterns by inhibiting IRF3 and NF-κB nuclear transport. Phosphorylation of IRF3 at S396, but not S386, was also inhibited. We propose that, rather than promoting HIV-1 nuclear import, Vpr interacts with karyopherins to disturb their import of IRF3 and NF-κB to promote replication in macrophages. Concordantly, we demonstrate Vpr dependent rescue of HIV-1 replication in human macrophages from inhibition by cGAMP, the product of activated cGAS. We propose a model that unifies Vpr manipulation of nuclear import and inhibition of innate immune activation to promote HIV-1 replication and transmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hataf Khan

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Rebecca P Sumner

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Jane Rasaiyaah

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Choon Ping Tan

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Maria Teresa Rodriguez-Plata

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    Maria Teresa Rodriguez-Plata, Maria Teresa Rodriguez-Plata is affiliated with Black Belt TX Ltd. The author has no financial interests to declare..
  6. Chris Van Tulleken

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Douglas Fink

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Lorena Zuliani-Alvarez

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4682-4043
  9. Lucy Thorne

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  10. David Stirling

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  11. Richard S B Milne

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  12. Greg J Towers

    Infection and Immunity, University College London, London, United Kingdom
    For correspondence
    g.towers@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7707-0264

Funding

Wellcome Trust (Senior Biomedical Research Fellowship)

  • Greg J Towers

H2020 European Research Council (Advanced Grant HIVinnate)

  • Greg J Towers

Medical Research Council (PhD studentship)

  • Hataf Khan

Medical Research Council (Clinical training fellowship)

  • Chris Van Tulleken

Wellcome Trust (Collaborative Award)

  • Greg J Towers

National Institute of Health Research (University College London Hospitals Biomedical Research Centre)

  • Greg J Towers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the UCL/UCLH Committees on the Ethics of Human Research, Committee Alpha reference (06/Q0502/92). All participants provided written informed consent and consent for publication.

Copyright

© 2020, Khan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,740
    views
  • 387
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hataf Khan
  2. Rebecca P Sumner
  3. Jane Rasaiyaah
  4. Choon Ping Tan
  5. Maria Teresa Rodriguez-Plata
  6. Chris Van Tulleken
  7. Douglas Fink
  8. Lorena Zuliani-Alvarez
  9. Lucy Thorne
  10. David Stirling
  11. Richard S B Milne
  12. Greg J Towers
(2020)
HIV-1 Vpr antagonizes innate immune activation by targeting karyopherin-mediated NF- κB/IRF3 nuclear transport
eLife 9:e60821.
https://doi.org/10.7554/eLife.60821

Share this article

https://doi.org/10.7554/eLife.60821

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.

    1. Microbiology and Infectious Disease
    Han Kang Tee, Simon Crouzet ... Caroline Tapparel
    Research Article

    Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as model and demonstrated that unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that acquisition of capsid mutations conferring affinity for HS come together with decreased capsid stability and allow EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.