Subthalamic beta targeted neurofeedback speeds up movement initiation but increases tremor in Parkinsonian patients

  1. Shenghong He
  2. Abteen Mostofi
  3. Emilie Syed
  4. Flavie Torrecillos
  5. Gerd Tinkhauser
  6. Petra Fischer
  7. Alek Pogosyan
  8. Harutomo Hasegawa
  9. Yuanqing Li
  10. Keyoumars Ashkan
  11. Erlick Pereira
  12. Peter Brown  Is a corresponding author
  13. Huiling Tan  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. St George's University of London, United Kingdom
  3. Nuffield Dep of Clinical Neurosciences and MRC BNDU, United Kingdom
  4. King's College Hospital NHS Foundation Trust, United Kingdom
  5. South China University of Technology, China
  6. Kings College London, United Kingdom

Abstract

Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson's disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN LFPs, suggesting an additional cross-frequency interaction between STN beta and theta activities.

Data availability

Source data and codes for generating Figures 2-7, all supplement figures, and Table II have been provided.

Article and author information

Author details

  1. Shenghong He

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Abteen Mostofi

    Neurosciences Research Centre, St George's University of London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Emilie Syed

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Flavie Torrecillos

    Clinical Neurosciences, Nuffield Dep of Clinical Neurosciences and MRC BNDU, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Gerd Tinkhauser

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Petra Fischer

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5585-8977
  7. Alek Pogosyan

    Nuffield Department of Clinical Neuroscience; 2. Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. Harutomo Hasegawa

    Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Yuanqing Li

    School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
    Competing interests
    No competing interests declared.
  10. Keyoumars Ashkan

    Department of Neurosurgery, Kings College Hospital, Kings College London, London, United Kingdom
    Competing interests
    Keyoumars Ashkan, has received educational grants from Medtronic and Abbott.
  11. Erlick Pereira

    Neurosciences Research Centre, St George's University of London, London, United Kingdom
    Competing interests
    No competing interests declared.
  12. Peter Brown

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    For correspondence
    peter.brown@ndcn.ox.ac.uk
    Competing interests
    Peter Brown, is a consultant for Medtronic..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5201-3044
  13. Huiling Tan

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    huiling.tan@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8038-3029

Funding

Medical Research Council (MR/P012272/1)

  • Shenghong He
  • Huiling Tan

Medical Research Council (MC_UU_12024/1)

  • Flavie Torrecillos
  • Gerd Tinkhauser
  • Petra Fischer
  • Alek Pogosyan
  • Peter Brown

National Institute for Health Research (Oxford Biomedical Research Centre)

  • Shenghong He
  • Abteen Mostofi
  • Emilie Syed
  • Flavie Torrecillos
  • Gerd Tinkhauser
  • Petra Fischer
  • Alek Pogosyan
  • Peter Brown
  • Huiling Tan

Rosetrees Trust

  • Shenghong He
  • Huiling Tan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Preeya Khanna, University of California, Berkeley, United States

Ethics

Human subjects: Informed consent and consent to publish was obtained from patients before they took part in the study, which was approved by Oxfordshire Research Ethics Committee, reference number 18/SC/0006.

Version history

  1. Received: July 12, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 18, 2020 (version 1)
  4. Version of Record published: November 27, 2020 (version 2)

Copyright

© 2020, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,798
    Page views
  • 281
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shenghong He
  2. Abteen Mostofi
  3. Emilie Syed
  4. Flavie Torrecillos
  5. Gerd Tinkhauser
  6. Petra Fischer
  7. Alek Pogosyan
  8. Harutomo Hasegawa
  9. Yuanqing Li
  10. Keyoumars Ashkan
  11. Erlick Pereira
  12. Peter Brown
  13. Huiling Tan
(2020)
Subthalamic beta targeted neurofeedback speeds up movement initiation but increases tremor in Parkinsonian patients
eLife 9:e60979.
https://doi.org/10.7554/eLife.60979

Share this article

https://doi.org/10.7554/eLife.60979

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.