Subthalamic beta targeted neurofeedback speeds up movement initiation but increases tremor in Parkinsonian patients

  1. Shenghong He
  2. Abteen Mostofi
  3. Emilie Syed
  4. Flavie Torrecillos
  5. Gerd Tinkhauser
  6. Petra Fischer
  7. Alek Pogosyan
  8. Harutomo Hasegawa
  9. Yuanqing Li
  10. Keyoumars Ashkan
  11. Erlick Pereira
  12. Peter Brown  Is a corresponding author
  13. Huiling Tan  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. St George's University of London, United Kingdom
  3. Nuffield Dep of Clinical Neurosciences and MRC BNDU, United Kingdom
  4. King's College Hospital NHS Foundation Trust, United Kingdom
  5. South China University of Technology, China
  6. Kings College London, United Kingdom

Abstract

Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson's disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN LFPs, suggesting an additional cross-frequency interaction between STN beta and theta activities.

Data availability

Source data and codes for generating Figures 2-7, all supplement figures, and Table II have been provided.

Article and author information

Author details

  1. Shenghong He

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Abteen Mostofi

    Neurosciences Research Centre, St George's University of London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Emilie Syed

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Flavie Torrecillos

    Clinical Neurosciences, Nuffield Dep of Clinical Neurosciences and MRC BNDU, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Gerd Tinkhauser

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Petra Fischer

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5585-8977
  7. Alek Pogosyan

    Nuffield Department of Clinical Neuroscience; 2. Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. Harutomo Hasegawa

    Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Yuanqing Li

    School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
    Competing interests
    No competing interests declared.
  10. Keyoumars Ashkan

    Department of Neurosurgery, Kings College Hospital, Kings College London, London, United Kingdom
    Competing interests
    Keyoumars Ashkan, has received educational grants from Medtronic and Abbott.
  11. Erlick Pereira

    Neurosciences Research Centre, St George's University of London, London, United Kingdom
    Competing interests
    No competing interests declared.
  12. Peter Brown

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    For correspondence
    peter.brown@ndcn.ox.ac.uk
    Competing interests
    Peter Brown, is a consultant for Medtronic..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5201-3044
  13. Huiling Tan

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    huiling.tan@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8038-3029

Funding

Medical Research Council (MR/P012272/1)

  • Shenghong He
  • Huiling Tan

Medical Research Council (MC_UU_12024/1)

  • Flavie Torrecillos
  • Gerd Tinkhauser
  • Petra Fischer
  • Alek Pogosyan
  • Peter Brown

National Institute for Health Research (Oxford Biomedical Research Centre)

  • Shenghong He
  • Abteen Mostofi
  • Emilie Syed
  • Flavie Torrecillos
  • Gerd Tinkhauser
  • Petra Fischer
  • Alek Pogosyan
  • Peter Brown
  • Huiling Tan

Rosetrees Trust

  • Shenghong He
  • Huiling Tan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent and consent to publish was obtained from patients before they took part in the study, which was approved by Oxfordshire Research Ethics Committee, reference number 18/SC/0006.

Copyright

© 2020, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,976
    views
  • 299
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shenghong He
  2. Abteen Mostofi
  3. Emilie Syed
  4. Flavie Torrecillos
  5. Gerd Tinkhauser
  6. Petra Fischer
  7. Alek Pogosyan
  8. Harutomo Hasegawa
  9. Yuanqing Li
  10. Keyoumars Ashkan
  11. Erlick Pereira
  12. Peter Brown
  13. Huiling Tan
(2020)
Subthalamic beta targeted neurofeedback speeds up movement initiation but increases tremor in Parkinsonian patients
eLife 9:e60979.
https://doi.org/10.7554/eLife.60979

Share this article

https://doi.org/10.7554/eLife.60979

Further reading

    1. Neuroscience
    Friedrich Schuessler, Francesca Mastrogiuseppe ... Omri Barak
    Research Article

    The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables. While many explanations have been proposed, a theoretical framework for the relationship between external and internal variables is lacking. Here, we utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network’s output are related from a geometrical point of view. We find that training RNNs can lead to two dynamical regimes: dynamics can either be aligned with the directions that generate output variables, or oblique to them. We show that the choice of readout weight magnitude before training can serve as a control knob between the regimes, similar to recent findings in feedforward networks. These regimes are functionally distinct. Oblique networks are more heterogeneous and suppress noise in their output directions. They are furthermore more robust to perturbations along the output directions. Crucially, the oblique regime is specific to recurrent (but not feedforward) networks, arising from dynamical stability considerations. Finally, we show that tendencies toward the aligned or the oblique regime can be dissociated in neural recordings. Altogether, our results open a new perspective for interpreting neural activity by relating network dynamics and their output.

    1. Neuroscience
    Ji Eun Ryu, Kyu-Won Shim ... Eun Young Kim
    Research Article

    The circadian clock, an internal time-keeping system orchestrates 24 hr rhythms in physiology and behavior by regulating rhythmic transcription in cells. Astrocytes, the most abundant glial cells, play crucial roles in CNS functions, but the impact of the circadian clock on astrocyte functions remains largely unexplored. In this study, we identified 412 circadian rhythmic transcripts in cultured mouse cortical astrocytes through RNA sequencing. Gene Ontology analysis indicated that genes involved in Ca2+ homeostasis are under circadian control. Notably, Herpud1 (Herp) exhibited robust circadian rhythmicity at both mRNA and protein levels, a rhythm disrupted in astrocytes lacking the circadian transcription factor, BMAL1. HERP regulated endoplasmic reticulum (ER) Ca2+ release by modulating the degradation of inositol 1,4,5-trisphosphate receptors (ITPRs). ATP-stimulated ER Ca2+ release varied with the circadian phase, being more pronounced at subjective night phase, likely due to the rhythmic expression of ITPR2. Correspondingly, ATP-stimulated cytosolic Ca2+ increases were heightened at the subjective night phase. This rhythmic ER Ca2+ response led to circadian phase-dependent variations in the phosphorylation of Connexin 43 (Ser368) and gap junctional communication. Given the role of gap junction channel (GJC) in propagating Ca2+ signals, we suggest that this circadian regulation of ER Ca2+ responses could affect astrocytic modulation of synaptic activity according to the time of day. Overall, our study enhances the understanding of how the circadian clock influences astrocyte function in the CNS, shedding light on their potential role in daily variations of brain activity and health.