Hydrodynamics of sponge pumps and evolution of the sponge body plan

  1. Seyed Saeed Asadzadeh  Is a corresponding author
  2. Thomas Kiørboe
  3. Poul Scheel Larsen
  4. Sally P Leys
  5. Gitai Yahel
  6. Jens H Walther
  1. Technical University of Denmark, Denmark
  2. University of Alberta, Canada
  3. Ruppin Academic Center, Israel

Abstract

Sponges are suspension feeders that filter vast amounts of water. Pumping is carried out by flagellated chambers that are connected to an inhalant and exhalant canal system. In 'leucon' sponges with relatively high-pressure resistance due to a complex and narrow canal system, pumping and filtering are only possible owing to the presence of a gasket-like structure (forming a canopy above the collar filters). Here we combine numerical and experimental work, and demonstrate how sponges that lack such sealing elements are able to efficiently pump and force the flagella driven flow through their collar filter, thanks to the formation of a 'hydrodynamic gasket' above the collar. Our findings link the architecture of flagellated chambers to that of the canal system, and lend support to the current view that the sponge aquiferous system evolved from an open-type filtration system, and that the first metazoans were filter feeders.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Seyed Saeed Asadzadeh

    National Institute of Aquatic Resources and Centre for Ocean Life, Technical University of Denmark, Lyngby, Denmark
    For correspondence
    sesasa@aqua.dtu.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6360-8924
  2. Thomas Kiørboe

    National Institute of Aquatic Resources and Centre for Ocean Life, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Poul Scheel Larsen

    Mechanical engineering, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7155-5965
  4. Sally P Leys

    Department of Biological Sciences, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9268-2181
  5. Gitai Yahel

    The Faculty of Marine Science, Ruppin Academic Center, Michmoret, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2306-355X
  6. Jens H Walther

    National Institute of Aquatic Resources and Centre for Ocean Life, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.

Funding

Danish council for Independent Research (7014-00033B)

  • Thomas Kiørboe

Villum Fonden (9278)

  • Seyed Saeed Asadzadeh
  • Poul Scheel Larsen
  • Jens H Walther

NSERC Discovery grant (2016-05446)

  • Sally P Leys

Villum Fonden

  • Seyed Saeed Asadzadeh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Version history

  1. Received: July 13, 2020
  2. Accepted: November 27, 2020
  3. Accepted Manuscript published: November 30, 2020 (version 1)
  4. Version of Record published: December 22, 2020 (version 2)

Copyright

© 2020, Asadzadeh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,741
    views
  • 358
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seyed Saeed Asadzadeh
  2. Thomas Kiørboe
  3. Poul Scheel Larsen
  4. Sally P Leys
  5. Gitai Yahel
  6. Jens H Walther
(2020)
Hydrodynamics of sponge pumps and evolution of the sponge body plan
eLife 9:e61012.
https://doi.org/10.7554/eLife.61012

Share this article

https://doi.org/10.7554/eLife.61012

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.