Hydrodynamics of sponge pumps and evolution of the sponge body plan

  1. Seyed Saeed Asadzadeh  Is a corresponding author
  2. Thomas Kiørboe
  3. Poul Scheel Larsen
  4. Sally P Leys
  5. Gitai Yahel
  6. Jens H Walther
  1. Technical University of Denmark, Denmark
  2. University of Alberta, Canada
  3. Ruppin Academic Center, Israel

Abstract

Sponges are suspension feeders that filter vast amounts of water. Pumping is carried out by flagellated chambers that are connected to an inhalant and exhalant canal system. In 'leucon' sponges with relatively high-pressure resistance due to a complex and narrow canal system, pumping and filtering are only possible owing to the presence of a gasket-like structure (forming a canopy above the collar filters). Here we combine numerical and experimental work, and demonstrate how sponges that lack such sealing elements are able to efficiently pump and force the flagella driven flow through their collar filter, thanks to the formation of a 'hydrodynamic gasket' above the collar. Our findings link the architecture of flagellated chambers to that of the canal system, and lend support to the current view that the sponge aquiferous system evolved from an open-type filtration system, and that the first metazoans were filter feeders.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Seyed Saeed Asadzadeh

    National Institute of Aquatic Resources and Centre for Ocean Life, Technical University of Denmark, Lyngby, Denmark
    For correspondence
    sesasa@aqua.dtu.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6360-8924
  2. Thomas Kiørboe

    National Institute of Aquatic Resources and Centre for Ocean Life, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Poul Scheel Larsen

    Mechanical engineering, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7155-5965
  4. Sally P Leys

    Department of Biological Sciences, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9268-2181
  5. Gitai Yahel

    The Faculty of Marine Science, Ruppin Academic Center, Michmoret, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2306-355X
  6. Jens H Walther

    National Institute of Aquatic Resources and Centre for Ocean Life, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.

Funding

Danish council for Independent Research (7014-00033B)

  • Thomas Kiørboe

Villum Fonden (9278)

  • Seyed Saeed Asadzadeh
  • Poul Scheel Larsen
  • Jens H Walther

NSERC Discovery grant (2016-05446)

  • Sally P Leys

Villum Fonden

  • Seyed Saeed Asadzadeh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Asadzadeh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,265
    views
  • 433
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seyed Saeed Asadzadeh
  2. Thomas Kiørboe
  3. Poul Scheel Larsen
  4. Sally P Leys
  5. Gitai Yahel
  6. Jens H Walther
(2020)
Hydrodynamics of sponge pumps and evolution of the sponge body plan
eLife 9:e61012.
https://doi.org/10.7554/eLife.61012

Share this article

https://doi.org/10.7554/eLife.61012