Supervised mutational signatures for obesity and other tissue-specific etiological factors in cancer

  1. Bahman Afsari
  2. Albert Kuo
  3. YiFan Zhang
  4. Lu Li
  5. Kamel Lahouel
  6. Ludmila Danilova
  7. Alexander Favorov
  8. Thomas A Rosenquist
  9. Arthur P Grollman
  10. Ken W Kinzler
  11. Leslie Cope
  12. Bert Vogelstein
  13. Cristian Tomasetti  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Johns Hopkins School of Medicine, United States
  3. Stony Brook University, United States
  4. Howard Hughes Medical Institute, Ludwig Center, United States

Abstract

Determining the etiologic basis of the mutations that are responsible for cancer is one of the fundamental challenges in modern cancer research. Different mutational processes induce different types of DNA mutations, providing 'mutational signatures' that have led to key insights into cancer etiology. The most widely used signatures for assessing genomic data are based on unsupervised patterns that are then retrospectively correlated with certain features of cancer. We show here that supervised machine-learning techniques can identify signatures, called SuperSigs, that are more predictive than those currently available. Surprisingly, we found that aging yields different SuperSigs in different tissues, and the same is true for environmental exposures. We were able to discover SuperSigs associated with obesity, the most important lifestyle factor contributing to cancer in Western populations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used
    1. Weinstein
    (2013) TCGA
    CDG @ https://portal.gdc.cancer.gov/.

Article and author information

Author details

  1. Bahman Afsari

    Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Albert Kuo

    Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. YiFan Zhang

    Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Lu Li

    Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Kamel Lahouel

    Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4339-5749
  6. Ludmila Danilova

    Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2813-3094
  7. Alexander Favorov

    Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Thomas A Rosenquist

    Department of Pharmacological Sciences, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
  9. Arthur P Grollman

    Department of Pharmacological Sciences, Department of Medicine, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
  10. Ken W Kinzler

    Howard Hughes Medical Institute, Ludwig Center, Baltimore, United States
    Competing interests
    Ken W Kinzler, K.W.K. is a founder of and hold equity, and serve as consultant to Thrive Earlier Detection and Personal Genome Diagnostics. K.W.K. is on the Board of Directors of Thrive Earlier Detection. K.W.K. is a consultant to Sysmex, Eisai, and CAGE Pharma and hold equity in CAGE Pharma. K.W.K. is a consultant to and hold equity in NeoPhore. The companies named above, as well as other companies, have licensed previously described technologies from Johns Hopkins University. K.W.K is an inventor on some of these technologies. Licenses to these technologies are or will be associated with equity or royalty payments to the inventors as well as to Johns Hopkins University. Patent applications on the work described in this paper have or may be filed by Johns Hopkins University. The terms of all these arrangements are being managed by Johns Hopkins University in accordance with its conflict of interest policies..
  11. Leslie Cope

    Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  12. Bert Vogelstein

    Ludwig Center & Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, United States
    Competing interests
    Bert Vogelstein, B.V. is a founder of and hold equity, and serve as consultant to Thrive Earlier Detection and Personal Genome Diagnostics. B.V. is a consultant to Sysmex, Eisai, and CAGE Pharma and hold equity in CAGE Pharma. BV is also a consultant to Nexus, and is a consultant to and hold equity in NeoPhore. The companies named above, as well as other companies, have licensed previously described technologies from Johns Hopkins University. B.V. is an inventor on some of these technologies. Licenses to these technologies are or will be associated with equity or royalty payments to the inventors as well as to Johns Hopkins University. Patent applications on the work described in this paper have or may be filed by Johns Hopkins University. The terms of all these arrangements are being managed by Johns Hopkins University in accordance with its conflict of interest policies..
  13. Cristian Tomasetti

    Oncology, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    ctomasetti@jhu.edu
    Competing interests
    Cristian Tomasetti, C.T. is a consultant to Bayer and Johnson & Johnson. Thrive Earlier Detection has licensed previously described technologies from Johns Hopkins University. C.T. is an inventor on some of these technologies. Licenses to these technologies are or will be associated with equity or royalty payments to the inventors as well as to Johns Hopkins University. Patent applications on the work described in this paper have or may be filed by Johns Hopkins University. The terms of all these arrangements are being managed by Johns Hopkins University in accordance with its conflict of interest policies..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3277-4804

Funding

The John Templeton Foundation (#61471)

  • Bahman Afsari
  • Albert Kuo
  • YiFan Zhang
  • Lu Li
  • Kamel Lahouel
  • Ludmila Danilova
  • Cristian Tomasetti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Afsari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,056
    views
  • 441
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bahman Afsari
  2. Albert Kuo
  3. YiFan Zhang
  4. Lu Li
  5. Kamel Lahouel
  6. Ludmila Danilova
  7. Alexander Favorov
  8. Thomas A Rosenquist
  9. Arthur P Grollman
  10. Ken W Kinzler
  11. Leslie Cope
  12. Bert Vogelstein
  13. Cristian Tomasetti
(2021)
Supervised mutational signatures for obesity and other tissue-specific etiological factors in cancer
eLife 10:e61082.
https://doi.org/10.7554/eLife.61082

Share this article

https://doi.org/10.7554/eLife.61082

Further reading

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.