Coordinated crosstalk between microtubules and actin by a spectraplakin regulates lumen formation and branching

  1. Delia Ricolo
  2. Sofia J Araujo  Is a corresponding author
  1. University of Barcelona, Spain

Abstract

Subcellular lumen formation by single-cells involves complex cytoskeletal remodelling. We have previously shown that centrosomes are key players in the initiation of subcellular lumen formation in Drosophila melanogaster, but not much is known on the what leads to the growth of these subcellular luminal branches or makes them progress through a particular trajectory within the cytoplasm. Here, we have identified that the spectraplakin Short-stop (Shot) promotes the crosstalk between MTs and actin, which leads to the extension and guidance of the subcellular lumen within the Terminal Cell (TC) cytoplasm. Shot is enriched in cells undergoing the initial steps of subcellular branching as a direct response to FGF signalling. An excess of Shot induces ectopic acentrosomal luminal branching points in the embryonic and larval tracheal TC leading to cells with extra subcellular lumina. These data provide the first evidence for a role for spectraplakins in single-cell lumen formation and branching.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Delia Ricolo

    Genetics, Microbiology and Statisitics, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Sofia J Araujo

    Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
    For correspondence
    sofiajaraujo@ub.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4749-8913

Funding

Ministerio ciencia innovacion, Spain (PGC2018-099465-B-I00)

  • Delia Ricolo
  • Sofia J Araujo

Generalitat de Catalunya (2017 SGR 1455)

  • Delia Ricolo
  • Sofia J Araujo

Ministerio de Ciencia, Innovación y Universidades (FJCI201732443)

  • Delia Ricolo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Derek Applewhite, Reed College, United States

Version history

  1. Received: July 15, 2020
  2. Accepted: October 27, 2020
  3. Accepted Manuscript published: October 28, 2020 (version 1)
  4. Version of Record published: November 12, 2020 (version 2)

Copyright

© 2020, Ricolo & Araujo

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,075
    views
  • 302
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Delia Ricolo
  2. Sofia J Araujo
(2020)
Coordinated crosstalk between microtubules and actin by a spectraplakin regulates lumen formation and branching
eLife 9:e61111.
https://doi.org/10.7554/eLife.61111

Share this article

https://doi.org/10.7554/eLife.61111

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Qin Ni, Sean X Sun
    Insight

    An influx of water molecules can help immune cells called neutrophils to move to where they are needed in the body.

    1. Cell Biology
    2. Physics of Living Systems
    Tamas L Nagy, Evelyn Strickland, Orion D Weiner
    Research Article

    While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury, and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes are not known. We combine single-cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.