1. Cell Biology
Download icon

Optogenetic control of PRC1 reveals its role in chromosome alignment on the spindle by overlap length-dependent forces

  1. Mihaela Jagrić
  2. Patrik Risteski
  3. Jelena Martinčić
  4. Ana Milas
  5. Iva M Tolić  Is a corresponding author
  1. Ruđer Bošković Institute, Croatia
Research Article
  • Cited 9
  • Views 1,955
  • Annotations
Cite this article as: eLife 2021;10:e61170 doi: 10.7554/eLife.61170

Abstract

During metaphase, chromosome position at the spindle equator is regulated by the forces exerted by kinetochore microtubules and polar ejection forces. However, the role of forces arising from mechanical coupling of sister kinetochore fibers with bridging fibers in chromosome alignment is unknown. Here we develop an optogenetic approach for acute removal of PRC1 to partially disassemble bridging fibers and show that they promote chromosome alignment. Tracking of the plus-end protein EB3 revealed longer antiparallel overlaps of bridging microtubules upon PRC1 removal, which was accompanied by misaligned and lagging kinetochores. Kif4A/kinesin-4 and Kif18A/kinesin-8 were found within the bridging fiber and largely lost upon PRC1 removal, suggesting that these proteins regulate the overlap length of bridging microtubules. We propose that PRC1-mediated crosslinking of bridging microtubules and recruitment of kinesins to the bridging fiber promotes chromosome alignment by overlap length-dependent forces transmitted to the associated kinetochore fibers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Mihaela Jagrić

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrik Risteski

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2137-7491
  3. Jelena Martinčić

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  4. Ana Milas

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  5. Iva M Tolić

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    For correspondence
    tolic@irb.hr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1305-7922

Funding

European Research Council (ERC,GA number 647077)

  • Iva M Tolić

Croatian Science Foundation (HRZZ project IP-2014-09-4753)

  • Iva M Tolić

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Julie P I Welburn, University of Edinburgh, United Kingdom

Publication history

  1. Received: July 16, 2020
  2. Accepted: January 21, 2021
  3. Accepted Manuscript published: January 22, 2021 (version 1)
  4. Version of Record published: March 2, 2021 (version 2)

Copyright

© 2021, Jagrić et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,955
    Page views
  • 257
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Laura Le Pelletier et al.
    Research Article

    Aging is associated with central fat redistribution and insulin resistance. To identify age-related adipose features, we evaluated the senescence and adipogenic potential of adipose-derived-stromal cells (ASCs) from abdominal subcutaneous fat obtained from healthy normal-weight young (<25y) or older women (>60y). Increased cell passages of young-donor ASCs (in vitro aging), resulted in senescence but not oxidative stress. ASC-derived adipocytes presented impaired adipogenesis but no early mitochondrial dysfunction. Conversely, aged-donor ASCs at early passages displayed oxidative stress and mild senescence. ASC-derived adipocytes exhibited oxidative stress, and early mitochondrial dysfunction but adipogenesis was preserved. In vitro aging of aged-donor ASCs resulted in further increased senescence, mitochondrial dysfunction, oxidative stress and severe adipocyte dysfunction. When in vitro aged young-donor ASCs were treated with metformin, no alteration was alleviated. Conversely, metformin treatment of aged-donor ASCs decreased oxidative stress and mitochondrial dysfunction resulting in decreased senescence. Metformin's prevention of oxidative stress and of the resulting senescence improved the cells' adipogenic capacity and insulin sensitivity. This effect was mediated by the activation of AMP-activated-protein-kinase as revealed by its specific inhibition and activation. Overall, aging ASC-derived adipocytes presented impaired adipogenesis and insulin sensitivity. Targeting stress-induced senescence of ASCs with metformin may improve age-related adipose tissue dysfunction.

    1. Cell Biology
    Julia Sánchez-Ceinos et al.
    Research Article

    Preadipocytes are crucial for healthy adipose tissue expansion. Preadipocyte differentiation is altered in obese individuals, which has been proposed to contribute to obesity-associated metabolic disturbances. Here, we aimed at identifying the pathogenic processes underlying impaired adipocyte differentiation in obese individuals with insulin resistance (IR)/type 2 diabetes (T2D). We report that down-regulation of a key member of the major spliceosome, PRFP8/PRP8, as observed in IR/T2D preadipocytes from subcutaneous (SC) fat, prevented adipogenesis by altering both the expression and splicing patterns of adipogenic transcription factors and lipid droplet-related proteins, while adipocyte differentiation was restored upon recovery of PRFP8/PRP8 normal levels. Adipocyte differentiation was also compromised under conditions of endoplasmic reticulum (ER)-associated protein degradation (ERAD) hyperactivation, as occurs in SC and omental (OM) preadipocytes in IR/T2D obesity. Thus, targeting mRNA splicing and ER proteostasis in preadipocytes could improve adipose tissue function and thus contribute to metabolic health in obese individuals.