1. Cell Biology
Download icon

Optogenetic control of PRC1 reveals its role in chromosome alignment on the spindle by overlap length-dependent forces

  1. Mihaela Jagrić
  2. Patrik Risteski
  3. Jelena Martinčić
  4. Ana Milas
  5. Iva M Tolić  Is a corresponding author
  1. Ruđer Bošković Institute, Croatia
Research Article
  • Cited 0
  • Views 516
  • Annotations
Cite this article as: eLife 2021;10:e61170 doi: 10.7554/eLife.61170

Abstract

During metaphase, chromosome position at the spindle equator is regulated by the forces exerted by kinetochore microtubules and polar ejection forces. However, the role of forces arising from mechanical coupling of sister kinetochore fibers with bridging fibers in chromosome alignment is unknown. Here we develop an optogenetic approach for acute removal of PRC1 to partially disassemble bridging fibers and show that they promote chromosome alignment. Tracking of the plus-end protein EB3 revealed longer antiparallel overlaps of bridging microtubules upon PRC1 removal, which was accompanied by misaligned and lagging kinetochores. Kif4A/kinesin-4 and Kif18A/kinesin-8 were found within the bridging fiber and largely lost upon PRC1 removal, suggesting that these proteins regulate the overlap length of bridging microtubules. We propose that PRC1-mediated crosslinking of bridging microtubules and recruitment of kinesins to the bridging fiber promotes chromosome alignment by overlap length-dependent forces transmitted to the associated kinetochore fibers.

Article and author information

Author details

  1. Mihaela Jagrić

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrik Risteski

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2137-7491
  3. Jelena Martinčić

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  4. Ana Milas

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  5. Iva M Tolić

    Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
    For correspondence
    tolic@irb.hr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1305-7922

Funding

European Research Council (ERC,GA number 647077)

  • Iva M Tolić

Croatian Science Foundation (HRZZ project IP-2014-09-4753)

  • Iva M Tolić

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Julie P I Welburn, University of Edinburgh, United Kingdom

Publication history

  1. Received: July 16, 2020
  2. Accepted: January 21, 2021
  3. Accepted Manuscript published: January 22, 2021 (version 1)

Copyright

© 2021, Jagrić et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 516
    Page views
  • 137
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Haibin Yang et al.
    Research Article Updated

    Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Qiuying Liu et al.
    Research Article Updated

    The regulation of stem cell fate is poorly understood. Genetic studies in Caenorhabditis elegans lead to the hypothesis that a conserved cytoplasmic double-negative feedback loop consisting of the RNA-binding protein Trim71 and the let-7 microRNA controls the pluripotency and differentiation of stem cells. Although let-7-microRNA-mediated inhibition of Trim71 promotes differentiation, whether and how Trim71 regulates pluripotency and inhibits the let-7 microRNA are still unknown. Here, we show that Trim71 represses Ago2 mRNA translation in mouse embryonic stem cells. Blocking this repression leads to a specific post-transcriptional increase of mature let-7 microRNAs, resulting in let-7-dependent stemness defects and accelerated differentiation in the stem cells. These results not only support the Trim71-let-7-microRNA bi-stable switch model in controlling stem cell fate, but also reveal that repressing the conserved pro-differentiation let-7 microRNAs at the mature microRNA level by Ago2 availability is critical to maintaining pluripotency.