The final step of 40S ribosomal subunit maturation is controlled by a dual key lock

  1. Laura Plassart
  2. Ramtin Shayan
  3. Christian Montellese
  4. Dana Rinaldi
  5. Natacha Larburu
  6. Carole Pichereaux
  7. Carine Froment
  8. Simon Lebaron
  9. Marie-Françoise O'Donohue
  10. Ulrike Kutay
  11. Julien Marcoux
  12. Pierre-Emmanuel Gleizes  Is a corresponding author
  13. Celia Plisson-Chastang  Is a corresponding author
  1. Centre de Biologie Integrative, University of Toulouse, France
  2. ETH Zürich, Switzerland
  3. Institut de Pharmacologie et de Biologie Structurale, France
  4. CNRS, France

Abstract

Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3' end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-EM analysis of late human pre-40S particles purified using a catalytically-inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3' end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.

Data availability

Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD019270. Cryo-EM maps have been deposited in the Electron Microscopy Data Bank (EMDB), under the accession codes : EMD-11440 (State A multi-body composite map); EMD-11441 (State B multi-body composite map); EMD-11446 (State A, head); EMD-11445 (State A, body); EMD-11447 (State A, platform); EMD-11443 (State B, head); EMD-11442 (State B, body); EMD-11444 (State B, platform). Atomic coordinate models of State A and State B RIO1(kd)-StHA pre-40S particles have been deposited in the Protein Data Bank (PDB), with respective PDB accession codes 6ZUO and 6ZV6.

Article and author information

Author details

  1. Laura Plassart

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ramtin Shayan

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Montellese

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Dana Rinaldi

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Natacha Larburu

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Carole Pichereaux

    Department of Biophysics, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Carine Froment

    Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon Lebaron

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Marie-Françoise O'Donohue

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Ulrike Kutay

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8257-7465
  11. Julien Marcoux

    Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7321-7436
  12. Pierre-Emmanuel Gleizes

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    For correspondence
    pierre-emmanuel.gleizes@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
  13. Celia Plisson-Chastang

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    For correspondence
    celia.plisson-chastang@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8439-8428

Funding

Agence Nationale de la Recherche (16-CE11-0029)

  • Laura Plassart
  • Ramtin Shayan
  • Natacha Larburu
  • Simon Lebaron
  • Julien Marcoux
  • Pierre-Emmanuel Gleizes
  • Celia Plisson-Chastang

Swiss National Science Fundation (31003A_166565)

  • Christian Montellese

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Plassart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,569
    views
  • 287
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Plassart
  2. Ramtin Shayan
  3. Christian Montellese
  4. Dana Rinaldi
  5. Natacha Larburu
  6. Carole Pichereaux
  7. Carine Froment
  8. Simon Lebaron
  9. Marie-Françoise O'Donohue
  10. Ulrike Kutay
  11. Julien Marcoux
  12. Pierre-Emmanuel Gleizes
  13. Celia Plisson-Chastang
(2021)
The final step of 40S ribosomal subunit maturation is controlled by a dual key lock
eLife 10:e61254.
https://doi.org/10.7554/eLife.61254

Share this article

https://doi.org/10.7554/eLife.61254

Further reading

    1. Chromosomes and Gene Expression
    Linda S Rubio, Suman Mohajan, David S Gross
    Research Article

    In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10–20 min and dissipate within 1 hr in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 hr). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5–10 min and dissipate within 1 hr). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.

    1. Chromosomes and Gene Expression
    Ester Vazquez-Fernandez, Jing Yang ... David Barford
    Research Article

    The anaphase-promoting complex/cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that controls progression through the cell cycle by orchestrating the timely proteolysis of mitotic cyclins and other cell cycle regulatory proteins. Although structures of multiple human APC/C complexes have been extensively studied over the past decade, the Saccharomyces cerevisiae APC/C has been less extensively investigated. Here, we describe medium resolution structures of three S. cerevisiae APC/C complexes: unphosphorylated apo-APC/C and the ternary APC/CCDH1-substrate complex, and phosphorylated apo-APC/C. Whereas the overall architectures of human and S. cerevisiae APC/C are conserved, as well as the mechanism of CDH1 inhibition by CDK-phosphorylation, specific variations exist, including striking differences in the mechanism of coactivator-mediated stimulation of E2 binding, and the activation of APC/CCDC20 by phosphorylation. In contrast to human APC/C in which coactivator induces a conformational change of the catalytic module APC2:APC11 to allow E2 binding, in S. cerevisiae apo-APC/C the catalytic module is already positioned to bind E2. Furthermore, we find no evidence of a phospho-regulatable auto-inhibitory segment of APC1, that in the unphosphorylated human APC/C, sterically blocks the CDC20C-box binding site of APC8. Thus, although the functions of APC/C are conserved from S. cerevisiae to humans, molecular details relating to their regulatory mechanisms differ.