The final step of 40S ribosomal subunit maturation is controlled by a dual key lock

  1. Laura Plassart
  2. Ramtin Shayan
  3. Christian Montellese
  4. Dana Rinaldi
  5. Natacha Larburu
  6. Carole Pichereaux
  7. Carine Froment
  8. Simon Lebaron
  9. Marie-Françoise O'Donohue
  10. Ulrike Kutay
  11. Julien Marcoux
  12. Pierre-Emmanuel Gleizes  Is a corresponding author
  13. Celia Plisson-Chastang  Is a corresponding author
  1. Centre de Biologie Integrative, University of Toulouse, France
  2. ETH Zürich, Switzerland
  3. Institut de Pharmacologie et de Biologie Structurale, France
  4. CNRS, France

Abstract

Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3' end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-EM analysis of late human pre-40S particles purified using a catalytically-inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3' end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.

Data availability

Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD019270. Cryo-EM maps have been deposited in the Electron Microscopy Data Bank (EMDB), under the accession codes : EMD-11440 (State A multi-body composite map); EMD-11441 (State B multi-body composite map); EMD-11446 (State A, head); EMD-11445 (State A, body); EMD-11447 (State A, platform); EMD-11443 (State B, head); EMD-11442 (State B, body); EMD-11444 (State B, platform). Atomic coordinate models of State A and State B RIO1(kd)-StHA pre-40S particles have been deposited in the Protein Data Bank (PDB), with respective PDB accession codes 6ZUO and 6ZV6.

Article and author information

Author details

  1. Laura Plassart

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ramtin Shayan

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Montellese

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Dana Rinaldi

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Natacha Larburu

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Carole Pichereaux

    Department of Biophysics, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Carine Froment

    Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon Lebaron

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Marie-Françoise O'Donohue

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Ulrike Kutay

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8257-7465
  11. Julien Marcoux

    Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7321-7436
  12. Pierre-Emmanuel Gleizes

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    For correspondence
    pierre-emmanuel.gleizes@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
  13. Celia Plisson-Chastang

    Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative, University of Toulouse, Toulouse, France
    For correspondence
    celia.plisson-chastang@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8439-8428

Funding

Agence Nationale de la Recherche (16-CE11-0029)

  • Laura Plassart
  • Ramtin Shayan
  • Natacha Larburu
  • Simon Lebaron
  • Julien Marcoux
  • Pierre-Emmanuel Gleizes
  • Celia Plisson-Chastang

Swiss National Science Fundation (31003A_166565)

  • Christian Montellese

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States

Version history

  1. Received: July 20, 2020
  2. Accepted: April 19, 2021
  3. Accepted Manuscript published: April 28, 2021 (version 1)
  4. Version of Record published: May 11, 2021 (version 2)

Copyright

© 2021, Plassart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,412
    views
  • 278
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Plassart
  2. Ramtin Shayan
  3. Christian Montellese
  4. Dana Rinaldi
  5. Natacha Larburu
  6. Carole Pichereaux
  7. Carine Froment
  8. Simon Lebaron
  9. Marie-Françoise O'Donohue
  10. Ulrike Kutay
  11. Julien Marcoux
  12. Pierre-Emmanuel Gleizes
  13. Celia Plisson-Chastang
(2021)
The final step of 40S ribosomal subunit maturation is controlled by a dual key lock
eLife 10:e61254.
https://doi.org/10.7554/eLife.61254

Share this article

https://doi.org/10.7554/eLife.61254

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.