POMK regulates dystroglycan function via LARGE1-mediated elongation of matriglycan

  1. Ameya S Walimbe
  2. Hidehiko Okuma
  3. Soumya Joseph
  4. Tiandi Yang
  5. Takahiro Yonekawa
  6. Jeffrey M Hord
  7. David Venzke
  8. Mary E Anderson
  9. Silvia Torelli
  10. Adnan Manzur
  11. Megan Devereaux
  12. Marco Cuellar
  13. Sally Prouty
  14. Saul Ocampo Landa
  15. Liping Yu
  16. Junyu Xiao
  17. Jack E Dixon
  18. Francesco Muntoni
  19. Kevin P Campbell  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, United States
  2. Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, United Kingdom
  3. University of Iowa, United States
  4. Peking University, China
  5. University of California, San Diego, United States
  6. UCL Great Ormond Street Institute of Child Health, United Kingdom
  7. Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, United States

Abstract

Matriglycan [-GlcA-β1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetylglucosaminyltransferase-1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNac-β1,3-GlcNac-β1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk gene expression in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Ameya S Walimbe

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hidehiko Okuma

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Soumya Joseph

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tiandi Yang

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Takahiro Yonekawa

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jeffrey M Hord

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David Venzke

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8180-9562
  8. Mary E Anderson

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Silvia Torelli

    Neurology, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Adnan Manzur

    Neurology, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Megan Devereaux

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Marco Cuellar

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Sally Prouty

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Saul Ocampo Landa

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Liping Yu

    University of Iowa Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Junyu Xiao

    School of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1822-1701
  17. Jack E Dixon

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8266-5449
  18. Francesco Muntoni

    UCL Great Ormond Street Institute of Child Health, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Kevin P Campbell

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, United States
    For correspondence
    kevin-campbell@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2066-5889

Funding

Paul D. Wellstone Muscular Dystrophy Specialized Research Center grant (1U54NS053672)

  • Kevin P Campbell

Great Ormond Street Hospital for Children NHS Foundation Trust and University College

  • Silvia Torelli
  • Francesco Muntoni

Medical Scientist Training Program Grant by the National Institute of General Medical Sciences (5 T32 GM007337)

  • Ameya S Walimbe

Howard Hughes Medical Institute

  • Kevin P Campbell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph G Gleeson, Howard Hughes Medical Institute, The Rockefeller University, United States

Ethics

Animal experimentation: Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) protocols of the University of Iowa (#0081122).

Human subjects: All procedures performed in this study involving human participants were in accordance with the ethical standards of NHS Health Research Authority (REC ref: 06/Q0406/33). We acknowledge and thank the BRC/MRC Centre for Neuromuscular Diseases Biobank for providing patients' serum and biopsy samples. We confirm that informed consent was provided to the patient and family regarding the nature of the genetic studies to be performed upon collection of samples and is available for our patient.

Version history

  1. Received: July 23, 2020
  2. Accepted: September 24, 2020
  3. Accepted Manuscript published: September 25, 2020 (version 1)
  4. Accepted Manuscript updated: September 29, 2020 (version 2)
  5. Version of Record published: October 14, 2020 (version 3)
  6. Version of Record updated: October 22, 2020 (version 4)

Copyright

© 2020, Walimbe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,863
    views
  • 276
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ameya S Walimbe
  2. Hidehiko Okuma
  3. Soumya Joseph
  4. Tiandi Yang
  5. Takahiro Yonekawa
  6. Jeffrey M Hord
  7. David Venzke
  8. Mary E Anderson
  9. Silvia Torelli
  10. Adnan Manzur
  11. Megan Devereaux
  12. Marco Cuellar
  13. Sally Prouty
  14. Saul Ocampo Landa
  15. Liping Yu
  16. Junyu Xiao
  17. Jack E Dixon
  18. Francesco Muntoni
  19. Kevin P Campbell
(2020)
POMK regulates dystroglycan function via LARGE1-mediated elongation of matriglycan
eLife 9:e61388.
https://doi.org/10.7554/eLife.61388

Share this article

https://doi.org/10.7554/eLife.61388

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.