Abstract

Antibodies are critical components of adaptive immunity, binding with high affinity to pathogenic epitopes. Antibodies undergo rigorous selection to achieve this high affinity, yet some maintain an additional basal level of low affinity, broad reactivity to diverse epitopes, a phenomenon termed 'polyreactivity'. While polyreactivity has been observed in antibodies isolated from various immunological niches, the biophysical properties that allow for promiscuity in a protein selected for high affinity binding to a single target remain unclear. Using a database of over 1,000 polyreactive and non-polyreactive antibody sequences, we created a bioinformatic pipeline to isolate key determinants of polyreactivity. These determinants, which include an increase in inter-loop crosstalk and a propensity for a neutral binding surface, are sufficient to generate a classifier able to identify polyreactive antibodies with over 75% accuracy. The framework from which this classifier was built is generalizable, and represents a powerful, automated pipeline for future immune repertoire analysis.

Data availability

All data generated and all code used for analysis in this study has been published on GitHub at github.com/ctboughter/AIMS.

Article and author information

Author details

  1. Christopher T Boughter

    Graduate Program in Biophysical Sciences, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marta T Borowska

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jenna J Guthmiller

    Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Albert Bendelac

    Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrick C Wilson

    Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benoit Roux

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5254-2712
  7. Erin J Adams

    Department of Biochemistry and Molecular Biology; Committee on Immunology, University of Chicago, Chicago, United States
    For correspondence
    ejadams@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6271-8574

Funding

National Institute of Biomedical Imaging and Bioengineering (EB009412)

  • Christopher T Boughter

National Institute of Allergy and Infectious Diseases (AI147954)

  • Christopher T Boughter
  • Marta T Borowska
  • Erin J Adams

National Institute of Allergy and Infectious Diseases (AI115471)

  • Christopher T Boughter
  • Marta T Borowska
  • Erin J Adams

National Science Foundation (MCB-1517221)

  • Christopher T Boughter
  • Benoit Roux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Boughter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,532
    views
  • 645
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher T Boughter
  2. Marta T Borowska
  3. Jenna J Guthmiller
  4. Albert Bendelac
  5. Patrick C Wilson
  6. Benoit Roux
  7. Erin J Adams
(2020)
Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops
eLife 9:e61393.
https://doi.org/10.7554/eLife.61393

Share this article

https://doi.org/10.7554/eLife.61393

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Immunology and Inflammation
    Alexandra a Aybar-Torres, Lennon A Saldarriaga ... Lei Jin
    Research Article

    The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.