Abstract

Antibodies are critical components of adaptive immunity, binding with high affinity to pathogenic epitopes. Antibodies undergo rigorous selection to achieve this high affinity, yet some maintain an additional basal level of low affinity, broad reactivity to diverse epitopes, a phenomenon termed 'polyreactivity'. While polyreactivity has been observed in antibodies isolated from various immunological niches, the biophysical properties that allow for promiscuity in a protein selected for high affinity binding to a single target remain unclear. Using a database of over 1,000 polyreactive and non-polyreactive antibody sequences, we created a bioinformatic pipeline to isolate key determinants of polyreactivity. These determinants, which include an increase in inter-loop crosstalk and a propensity for a neutral binding surface, are sufficient to generate a classifier able to identify polyreactive antibodies with over 75% accuracy. The framework from which this classifier was built is generalizable, and represents a powerful, automated pipeline for future immune repertoire analysis.

Data availability

All data generated and all code used for analysis in this study has been published on GitHub at github.com/ctboughter/AIMS.

Article and author information

Author details

  1. Christopher T Boughter

    Graduate Program in Biophysical Sciences, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marta T Borowska

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jenna J Guthmiller

    Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Albert Bendelac

    Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrick C Wilson

    Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benoit Roux

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5254-2712
  7. Erin J Adams

    Department of Biochemistry and Molecular Biology; Committee on Immunology, University of Chicago, Chicago, United States
    For correspondence
    ejadams@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6271-8574

Funding

National Institute of Biomedical Imaging and Bioengineering (EB009412)

  • Christopher T Boughter

National Institute of Allergy and Infectious Diseases (AI147954)

  • Christopher T Boughter
  • Marta T Borowska
  • Erin J Adams

National Institute of Allergy and Infectious Diseases (AI115471)

  • Christopher T Boughter
  • Marta T Borowska
  • Erin J Adams

National Science Foundation (MCB-1517221)

  • Christopher T Boughter
  • Benoit Roux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Boughter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,664
    views
  • 656
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher T Boughter
  2. Marta T Borowska
  3. Jenna J Guthmiller
  4. Albert Bendelac
  5. Patrick C Wilson
  6. Benoit Roux
  7. Erin J Adams
(2020)
Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops
eLife 9:e61393.
https://doi.org/10.7554/eLife.61393

Share this article

https://doi.org/10.7554/eLife.61393

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.