Polo-like kinase acts as a molecular timer that safeguards the asymmetric fate of spindle microtubule-organizing centers

  1. Laura Matellán
  2. Javier Manzano-López
  3. Fernando Monje-Casas  Is a corresponding author
  1. University of Seville, Spain
  2. Spanish National Research Council (CSIC), Spain

Abstract

The microtubules that form the mitotic spindle originate from microtubule organizing centers (MTOCs) located at either pole. After duplication, spindle MTOCs can be differentially inherited during asymmetric cell division in organisms ranging from yeast to humans. Problems with establishing predetermined spindle MTOC inheritance patterns during stem cell division have been associated with accelerated cellular aging and the development of both cancer and neurodegenerative disorders. Here, we expand the repertoire of functions Polo-like kinase family members fulfill in regulating pivotal cell cycle processes. We demonstrate that the Plk1 homolog Cdc5 acts as a molecular timer that facilitates the timely and sequential recruitment of two key determinants of spindle MTOCs distribution, i.e., the γ-tubulin complex receptor Spc72 and the protein Kar9, and establishes the fate of these structures, safeguarding their asymmetric inheritance during Saccharomyces cerevisiae mitosis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. No new datasets were generated or previously published datasets used in our work. Rich media files such as videos, audio clips or animations were also not created for this article. No further relevant additional data file was provided.

Article and author information

Author details

  1. Laura Matellán

    CABIMER, University of Seville, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Javier Manzano-López

    CABIMER, Spanish National Research Council (CSIC), Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Fernando Monje-Casas

    CABIMER, Spanish National Research Council (CSIC), Seville, Spain
    For correspondence
    fernando.monje@cabimer.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3587-2373

Funding

Spanish Ministry of Economy, Industry and Competitiveness and European Union (BFU2013-43718-P)

  • Fernando Monje-Casas

Spanish Ministry of Economy, Industry and Competitiveness and European Union (BFU2016-76642-P)

  • Fernando Monje-Casas

Spanish Ministry of Economy, Industry and Competitiveness and European Union (FPI fellowship)

  • Laura Matellán

Spanish Ministry of Economy, Industry and Competitiveness and European Union (Juan de la Cierva research contract)

  • Javier Manzano-López

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elçin Ünal, University of California, Berkeley, United States

Version history

  1. Received: July 28, 2020
  2. Accepted: October 20, 2020
  3. Accepted Manuscript published: November 2, 2020 (version 1)
  4. Version of Record published: November 16, 2020 (version 2)

Copyright

© 2020, Matellán et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,532
    views
  • 274
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Matellán
  2. Javier Manzano-López
  3. Fernando Monje-Casas
(2020)
Polo-like kinase acts as a molecular timer that safeguards the asymmetric fate of spindle microtubule-organizing centers
eLife 9:e61488.
https://doi.org/10.7554/eLife.61488

Share this article

https://doi.org/10.7554/eLife.61488

Further reading

    1. Cancer Biology
    2. Cell Biology
    Julian JA Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article Updated

    Collective cell migration is fundamental for the development of organisms and in the adult for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell–cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell–cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell–cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective SC migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased SC collective migration and increased clustering of SCs within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.