Neuroepithelial Stem Cells: The many roles of C1q
The protein C1q is best known for its role in the immune system: as a part of the C1 complex of the complement cascade, it helps to clear microbes and cellular debris from the body. However, it also has other roles beyond the immune system: for example, working with other elements of the complement cascade it helps to eliminate immature synapses during development of the visual system (Stevens et al., 2007) and is involved in Wnt signaling in muscle cells (Naito et al., 2012). C1q can also bind to myelin-associated glycoprotein and mask its ability to inhibit neurite outgrowth (Peterson et al., 2015), while the loss of C1q in mice results in cognitive decline (Stephan et al., 2013). More recent studies suggest a role for C1q in neurodegeneration (reviewed in Cho, 2019).
Now, in eLife, Francisca Benavente (University of California Irvine and Universidad del Desarrollo), Aileen Anderson (UC Irvine) and colleagues report new roles for C1q that have intriguing implications for signaling biology, recovery from spinal cord injury, stem cell-based therapies and, possibly, the evolution of the complement system (Benavente et al., 2020). The work shows that C1q is a ligand that can bind directly to several previously unidentified receptors (CD44, GPR62, BAI1, c-MET, and ADCY5), triggering the activation of downstream signaling pathways. The researchers demonstrate that in doing so, C1q can modulate different aspects of the biology of neuroepithelial stem cells (NSCs). Specifically, they show that C1q promotes the migration of NSCs by binding to a cell-surface glycoprotein called CD44, while promoting NSC proliferation via interactions with G-protein coupled receptor signaling pathways.
CD44 knockout eliminates the ability of C1q to promote chemotaxis, but not the ability to promote division, in NSCs. Likewise, the effects of C1q on NSC differentiation appear to be independent of signaling via CD44. Nonetheless, C1q also exhibited a dose-dependent effect on NSC differentiation: while a low nM dose significantly increased the generation of Olig-2+ oligodendrocyte-lineage cells in wild-type NSCs, fewer Olig-2+ cells were seen with higher concentrations of C1q in both wild-type and CD44 knock-out cells. A similar inhibitory effect was observed on the differentiation of two other cell types (GFAP+ astroglia and ßIII-tubulin expressing neuronal lineage cells), which also appeared to be independent of signaling via CD44.
Benavente et al. also demonstrate that C1q, again acting via CD44, has important effects on the ability of transplanted NSCs to promote recovery from spinal cord injury. Previously they had shown that delayed transplantation into a rodent model of spinal cord injury was associated with the migration of cells away from the injury epicenter, differentiation of the NSCs mostly into oligodendrocytes, and improved motor function (Salazar et al., 2010; Hooshmand et al., 2017). In contrast, transplantation right after the injury was associated with increased migration towards the epicenter, differentiation mostly into astroglial cells, and no effects on motor recovery. Now, they have found that the genetic inhibition of CD44 in NSCs, or the use of antibodies to inhibit C1q, prevented clustering of transplanted NSCs in the injury epicenter, reduced astroglial differentiation, and significantly improved motor outcomes when NSCs were transplanted into mice immediately after injury. They also found elevated levels of C1q in the injury epicenter following spinal cord injury, which suggests that this pathway has a role in the response to the injury.
The latest work also raises a number of interesting questions. Would inhibiting inflammation increase the utility of NSC transplantation in spinal cord injury? Does the efficacy of delayed transplantation depend upon decreased inflammation and C1q production in the injury site by this time? Moreover, the binding of C1q to other NSC receptor proteins (including two G-protein coupled receptors and the receptor tyrosine kinase c-Met) suggests that C1q may modulate a complex array of effects on NSC behavior within the injury site.
One would also like to know if the latest results are relevant to recovery in areas of the central nervous system where NSCs still exist in adults, and whether there are effects of age-related increases in C1q on these NSC compartments. Moreover, CD44 is expressed in many different cell types, and its expression changes dramatically during injury: are other cells susceptible to C1q-mediated effects on chemotaxis via CD44? Also, if the normal expression of C1q in an injury site is to promote the migration of cells that might be important in repair, would decreasing the inflammatory response be counterproductive in some instances? It would also be interesting to explore the effects of C1q on cell function more generally.
The observations that C1q is a ligand for multiple receptors may also lead to a better understanding of the evolution of the complement system. The evolutionary value of a single protein that works as a component of a multi-protein complex is difficult to discern. However, if C1q started off as a signaling ligand, its evolution is easier to understand. In addition, one wonders whether other components of the complement cascade might also have additional roles outside of their immunological functions.
Regardless of the answers to these questions, the discovery that C1q is itself a ligand for multiple receptors, and is capable of modulating important NSC functions, opens up a new window for studying the biology of C1q that is sure to lead to a series of provocative further discoveries.
References
-
Emerging roles of complement protein C1q in neurodegenerationAging and Disease 10:652–663.https://doi.org/10.14336/AD.2019.0118
-
Neutrophils induce astroglial differentiation and migration of human neural stem cells via C1q and C3a synthesisThe Journal of Immunology 199:1069–1085.https://doi.org/10.4049/jimmunol.1600064
-
A dramatic increase of C1q protein in the CNS during normal agingJournal of Neuroscience 33:13460–13474.https://doi.org/10.1523/JNEUROSCI.1333-13.2013
Article and author information
Author details
Publication history
Copyright
© 2020, Noble and Pröschel
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,040
- views
-
- 116
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Stem Cells and Regenerative Medicine
Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.
-
- Developmental Biology
- Stem Cells and Regenerative Medicine
In holothurians, the regenerative process following evisceration involves the development of a ‘rudiment’ or ‘anlage’ at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.