Loss of FLCN-FNIP1/2 induces a non-canonical interferon response in human renal tubular epithelial cells
Abstract
Germline inactivating mutations in Folliculin (FLCN) cause Birt–Hogg–Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing to kidney tumors. FLCN is a conserved, essential gene linked to diverse cellular processes but the mechanisms by which FLCN prevents kidney cancer remain unknown. Here we show that deleting FLCN activates TFE3, upregulating its downstream E-box genes in human renal tubular epithelial cells (RPTEC/TERT1), including RRAGD and GPNMB, without modifying mTORC1 activity. Surprisingly, deletion of FLCN or its binding partners FNIP1/FNIP2 also induces interferon response genes, but independently of interferon. Mechanistically, FLCN loss promotes STAT2 recruitment to chromatin and slows cellular proliferation. Our integrated analysis identifies STAT1/2 signaling as a novel target of FLCN in renal cells and BHD tumors. STAT1/2 activation appears to counterbalance TFE3-directed hyper-proliferation and may influence the immune response. These findings shed light on unique roles of FLCN in human renal tumorigenesis and pinpoint candidate prognostic biomarkers.
Data availability
Data files of transcriptomic and proteomic data are provided as supplementary table 1. Raw data files deposited on Dryad Digital Repository (RNAseq): doi:10.5061/dryad.6djh9w0zsProteomeXchange (Mass Spec) under accession number PXD021346
-
RNAseq raw counts_FLCN positive vs. FLCN negative RPTECsDryad Digital Repository, doi:10.5061/dryad.6djh9w0zs.
-
Mass Spec data_FLCN positive vs. FLCN negative RPTECsProteomeXchange, PXD021346.
Article and author information
Author details
Funding
KWF Kankerbestrijding/Alpe d'Huzes Bas Mulder Award
- Jarno Drost
Foundation Children Cancer Free (Core Funding)
- Sepide Derakhshan
Oncode Institute
- Jarno Drost
Cancer Center Amsterdam (CCA2018-5-51)
- Iris E Glykofridis
- Rob MF Wolthuis
Cancer Center Amsterdam (Core Funding Mass Spectrometry Infrastructure)
- Jaco C Knol
- Thang V Pham
- Sander R Piersma
- Connie R Jimenez
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: BHD T1 and BHD T2 tumor samples were obtained with informed consent. Both tissues are leftover material from surgery and are stored in our BHD biobank (2019.359 at AmsterdamUMC).
Copyright
© 2021, Glykofridis et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,669
- views
-
- 312
- downloads
-
- 16
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Chromosomes and Gene Expression
Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.
-
- Cancer Biology
- Cell Biology
TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.