Pollen Tube Guidance: Growing straight through walls

The pollen tube in a flowering plant grows in a direction that is influenced by the mechanical properties of the stigma papillae and the organization of structures called cortical microtubules inside these cells.
  1. Subramanian Sankaranarayanan  Is a corresponding author
  2. Sharon A Kessler  Is a corresponding author
  1. Department of Botany and Plant Pathology, Purdue University, United States
  2. Purdue Center for Plant Biology, Purdue University, United States

In a flowering plant, reproduction begins when grains of pollen stick to cells called stigma papillae that are located at the top of the pistil, which is the female part of the flower. A cell called a pollen tube then delivers the sperm cells contained in the pollen grains to the female gametes for fertilization. This is a long journey that involves the pollen tube travelling from the stigma papillae at the top of the pistil to the ovules that contain the female gametes, which are at the bottom of the pistil.

So how does the plant ensure that the pollen tube – which is a single cell that grows longer over time – finds the ovules and does not get lost en route? Several molecules and nutrients secreted by the pistil direct the growth of the pollen tube (Higashiyama and Takeuchi, 2015). However, the identity of the cues that guide the pollen tube in the first stages of its journey have remained a mystery.

Most plant cells grow by increasing their surface area while remaining attached to neighboring cells: pollen tubes are different in that they are tip-growing cells that can grow through the walls of other cells to reach their target. When the pollen tube first enters the pistil, it remains within the cell wall of the stigma papillae (Figure 1; left): could the components of this cell wall, or the mechanical properties of these cells, influence the growth of the pollen tube?

Pollen tube growth in stigma papillae.

When a grain of pollen (shown in mustard) lands on a papilla in the stigma (green) of a flowering plant, a pollen tube (PT; also shown in mustard) begins to grow through the cell wall (CW) of the papilla so that the sperm cells (S; red) in the pollen can be delivered to the female gametes, which are located in ovules deep inside the plant. In stage 12 flowers (left), the organization of the cortical microtubules (CMTs; blue lines) inside the papilla is highly anisotropic and the pollen tube grows in a straight line. In older stage 15 flowers (right), the organization of the microtubules is isotropic and the pollen tube forms a coil around the papilla as it grows. The vegetative cell (V) makes up the body of the pollen tube and encloses the sperm cells.

A number of studies have demonstrated how mechanical properties can influence a variety of cellular processes – including proliferation, differentiation, migration and cell signaling – in animal cells (Discher et al., 2005; Fu et al., 2010; Provenzano and Keely, 2011), and there is evidence that mechanical properties can also shape plant growth and development (Eng and Sampathkumar, 2018; Sampathkumar et al., 2019). For example, it is known that when a pollen tube penetrates the cell wall of a stigma papilla, it causes changes in the mechanical properties of the cell wall by exerting pressure (Zerzour et al., 2009; Sanati Nezhad and Geitmann, 2013).

However, the role of these mechanical properties in regulating the growth of pollen tube has not been explored in detail. Moreover, although the pollen tube is a good model for understanding the behavior of plant cells, and has been used in numerous in vitro studies of tip growth, it has proved challenging to study the directed growth of pollen tubes through the cell walls of stigma papillae in vivo. Now, in eLife, Thierry Gaude and co-workers at the Université de Lyon – including Lucie Riglet as first author – report the results of experiments on the model plant Arabidopsis thaliana that combine the power of microscopy, genetics, and chemical biology to provide new insights into the regulation of pollen tube growth (Riglet et al., 2020).

As stigmas age, they become less receptive to pollen (Gao et al., 2018), and the observation that pollen tubes tend to coil around papillae in aging stigmas forms the basis of this study. Riglet et al. found that aging was associated with changes in the organization of the cortical microtubules in the cytoskeleton: the orientations of these microtubules were more isotopic in older stigmas than in younger stigmas (Figure 1). To test the hypothesis that the organization of these microtubules has a role in directing pollen tube growth, the researchers examined plants that had a loss of function mutation in an enzyme called KATANIN (KTN1): this enzyme can sever microtubules, and thus allows microtubules to be re-oriented following mechanical stimulation (Sampathkumar et al., 2014). Riglet et al. found that pollen tubes coiled around the papillae in both young and old mutant plants: this indicates that the arrangement of the microtubules affects the ability of pollen tubes to grow straight through the cell walls and into the rest of the pistil.

Cortical microtubules are associated with cellulose synthesis, so the researchers tested whether the stiffness and composition of the cell wall in mutant and aging papillae was associated with pollen tube coiling. They found that softer cell walls and isotropic arrangements of cellulose microfibrils in mutant and aging papillae were associated with faster pollen tube growth and loss of directionality. Overall, the latest work supports the thesis that the mechanical properties and cell wall composition of the stigma papillae have an influence on pollen tube growth and help to guide it through the stigma. Moreover, by providing fundamental insights into the process of sexual reproduction in plants, the work is also relevant in the context of global food security as pollen-stigma interactions are critical for successful pollination and seed production in flowering plants.

Apart from pollen tubes, several types of plant, animal and fungal cells grow invasively, including root hairs, fibroblasts, cancer cells and fungal hyphae. In the future, it will be important to determine the contribution of mechanical forces to invasive growth. New technological advances such as lab-on-a-chip, MEMS (micro-electro-mechanical systems), deep-tissue imaging and computational tools will help researchers to measure the mechanical forces operating on and in cells (Nezhad et al., 2013). The pollen tube/pistil system will also make it possible to explore how chemical guidance cues work together with mechanical forces to regulate directional cell growth.

References

Article and author information

Author details

  1. Subramanian Sankaranarayanan

    Subramanian Sankaranarayanan is in the Department of Botany and Plant Pathology and the Purdue Center for Plant Biology, Purdue University, West Lafayette, United States

    For correspondence
    sankara3@purdue.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0398-2113
  2. Sharon A Kessler

    Sharon A Kessler is in the Department of Botany and Plant Pathology and the Purdue Center for Plant Biology, Purdue University, West Lafayette, United States

    For correspondence
    sakessler@purdue.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7964-0451

Publication history

  1. Version of Record published: September 1, 2020 (version 1)

Copyright

© 2020, Sankaranarayanan and Kessler

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,467
    Page views
  • 159
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Subramanian Sankaranarayanan
  2. Sharon A Kessler
(2020)
Pollen Tube Guidance: Growing straight through walls
eLife 9:e61647.
https://doi.org/10.7554/eLife.61647

Further reading

    1. Plant Biology
    Therese LaRue, Heike Lindner ... José R Dinneny
    Tools and Resources Updated

    The plant kingdom contains a stunning array of complex morphologies easily observed above-ground, but more challenging to visualize below-ground. Understanding the magnitude of diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental in determining how this trait contributes to species adaptation in local environments. Roots are the interface between the soil environment and the shoot system and therefore play a key role in anchorage, resource uptake, and stress resilience. Previously, we presented the GLO-Roots (Growth and Luminescence Observatory for Roots) system to study the RSA of soil-grown Arabidopsis thaliana plants from germination to maturity (Rellán-Álvarez et al., 2015). In this study, we present the automation of GLO-Roots using robotics and the development of image analysis pipelines in order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA in Arabidopsis, over time. These datasets describe the developmental dynamics of two independent panels of accessions and reveal highly complex and polygenic RSA traits that show significant correlation with climate variables of the accessions’ respective origins.

    1. Ecology
    2. Plant Biology
    Laura Stefan, Nadine Engbersen, Christian Schöb
    Research Article

    By capitalising on positive biodiversity-productivity relationships, intercropping provides opportunities to improve agricultural sustainability. Intercropping is generally implemented using commercial seeds that were bred for maximal productivity in monocultures, thereby ignoring the ability of plants to adapt over generations to the surrounding neighbourhood, notably through increased complementarity, i.e. reduced competition or increased facilitation. This is why using monoculture-adapted seeds for intercropping might limit the benefits of crop diversity on yield. However, the adaptation potential of crops and the corresponding changes in complementarity have not been explored in annual crop systems. Here we show that plant-plant interactions among annual crops shifted towards reduced competition and/or increased facilitation when the plants were growing in the same community type as their parents did in the previous two generations. Total yield did not respond to this common coexistence history, but in fertilized conditions, we observed increased overyielding in mixtures with a common coexistence history. Surprisingly, we observed character convergence between species sharing the same coexistence history for two generations, in monocultures but also in mixtures: the six crop species tested converged towards taller phenotypes with lower leaf dry matter content. This study provides the first empirical evidence for the potential of parental diversity affecting plant-plant interactions, species complementarity and therefore potentially ecosystem functioning of the following generations in annual cropping systems. Although further studies are required to assess the context-dependence of these results, our findings may still have important implications for diversified agriculture as they illustrate the potential of targeted cultivars to increase complementarity of species in intercropping, which could be achieved through specific breeding for mixtures.