Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans

  1. Michael Schaum  Is a corresponding author
  2. Edoardo Pinzuti
  3. Alexandra Sebastian
  4. Klaus Lieb
  5. Pascal Fries
  6. Arian Mobascher
  7. Patrick Jung
  8. Michael Wibral
  9. Oliver Tüscher
  1. Leibniz Institute for Resilience Research, Germany
  2. University Medical Center of the Johannes Gutenberg University, Germany
  3. Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany
  4. Georg-August University, Germany

Abstract

Motor inhibitory control implemented as response inhibition is an essential cognitive function required to dynamically adapt to rapidly changing environments. Despite of over a decade of research on the neural mechanisms of response inhibition, it remains unclear, how exactly response inhibition is initiated and implemented. Using a multimodal MEG/fMRI approach in 59 subjects our results reliably reveal that response inhibition is initiated by the right inferior frontal gyrus (rIFG) as a form of attention-independent top-down control that involves the modulation of beta-band activity. Furthermore, stopping performance was predicted by beta-band power and beta-band connectivity was directed from rIFG to pre-supplementary motor area (pre-SMA), indicating rIFG's dominance over pre-SMA. Thus, these results strongly support the hypothesis that rIFG initiates stopping, implemented by beta-band oscillations with potential to open up new ways of spatially localized oscillation-based interventions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. All source data files are available on Dryad Digital repository (https://doi.org/10.5061/dryad.x3ffbg7gp). All custom Matlab codes used in these analyses are available at https://github.com/meglab/acSST).

The following data sets were generated

Article and author information

Author details

  1. Michael Schaum

    Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research, Mainz, Germany
    For correspondence
    Michael.Schaum@lir-mainz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6589-4530
  2. Edoardo Pinzuti

    System mechanisms of resilience, Leibniz Institute for Resilience Research, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra Sebastian

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8381-8312
  4. Klaus Lieb

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Pascal Fries

    Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4270-1468
  6. Arian Mobascher

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Jung

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Wibral

    Georg-August University, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Oliver Tüscher

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (SFB 1193)

  • Michael Schaum

Deutsche Forschungsgemeinschaft (SFB 1193)

  • Edoardo Pinzuti

Deutsche Forschungsgemeinschaft (SFB 1193)

  • Alexandra Sebastian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All individual participants included in the study provided written informed consent before participation and consent to publish any research findings based on their provided data in anonymized form. The study was approved by the local ethics committees (Johann Wolfgang Goethe University, Frankfurt, Germany, and Medical Board of Rhineland-Palatinate, Mainz, Germany¸ IRB Protocol no. 837.128.11), and participants were financially compensated for their time.

Copyright

© 2021, Schaum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,957
    views
  • 428
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Schaum
  2. Edoardo Pinzuti
  3. Alexandra Sebastian
  4. Klaus Lieb
  5. Pascal Fries
  6. Arian Mobascher
  7. Patrick Jung
  8. Michael Wibral
  9. Oliver Tüscher
(2021)
Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans
eLife 10:e61679.
https://doi.org/10.7554/eLife.61679

Share this article

https://doi.org/10.7554/eLife.61679

Further reading

    1. Neuroscience
    Charles R Heller, Gregory R Hamersky, Stephen V David
    Research Article

    Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.