1. Neuroscience
Download icon

Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans

  1. Michael Schaum  Is a corresponding author
  2. Edoardo Pinzuti
  3. Alexandra Sebastian
  4. Klaus Lieb
  5. Pascal Fries
  6. Arian Mobascher
  7. Patrick Jung
  8. Michael Wibral
  9. Oliver Tüscher
  1. Leibniz Institute for Resilience Research, Germany
  2. University Medical Center of the Johannes Gutenberg University, Germany
  3. Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany
  4. Georg-August University, Germany
Research Article
  • Cited 3
  • Views 1,218
  • Annotations
Cite this article as: eLife 2021;10:e61679 doi: 10.7554/eLife.61679

Abstract

Motor inhibitory control implemented as response inhibition is an essential cognitive function required to dynamically adapt to rapidly changing environments. Despite of over a decade of research on the neural mechanisms of response inhibition, it remains unclear, how exactly response inhibition is initiated and implemented. Using a multimodal MEG/fMRI approach in 59 subjects our results reliably reveal that response inhibition is initiated by the right inferior frontal gyrus (rIFG) as a form of attention-independent top-down control that involves the modulation of beta-band activity. Furthermore, stopping performance was predicted by beta-band power and beta-band connectivity was directed from rIFG to pre-supplementary motor area (pre-SMA), indicating rIFG's dominance over pre-SMA. Thus, these results strongly support the hypothesis that rIFG initiates stopping, implemented by beta-band oscillations with potential to open up new ways of spatially localized oscillation-based interventions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. All source data files are available on Dryad Digital repository (https://doi.org/10.5061/dryad.x3ffbg7gp). All custom Matlab codes used in these analyses are available at https://github.com/meglab/acSST).

The following data sets were generated

Article and author information

Author details

  1. Michael Schaum

    Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research, Mainz, Germany
    For correspondence
    Michael.Schaum@lir-mainz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6589-4530
  2. Edoardo Pinzuti

    System mechanisms of resilience, Leibniz Institute for Resilience Research, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra Sebastian

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8381-8312
  4. Klaus Lieb

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Pascal Fries

    Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4270-1468
  6. Arian Mobascher

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Jung

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Wibral

    Georg-August University, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Oliver Tüscher

    Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (SFB 1193)

  • Michael Schaum

Deutsche Forschungsgemeinschaft (SFB 1193)

  • Edoardo Pinzuti

Deutsche Forschungsgemeinschaft (SFB 1193)

  • Alexandra Sebastian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All individual participants included in the study provided written informed consent before participation and consent to publish any research findings based on their provided data in anonymized form. The study was approved by the local ethics committees (Johann Wolfgang Goethe University, Frankfurt, Germany, and Medical Board of Rhineland-Palatinate, Mainz, Germany¸ IRB Protocol no. 837.128.11), and participants were financially compensated for their time.

Reviewing Editor

  1. Simon Little, UCSF, United States

Publication history

  1. Received: July 31, 2020
  2. Accepted: March 23, 2021
  3. Accepted Manuscript published: March 23, 2021 (version 1)
  4. Version of Record published: May 4, 2021 (version 2)

Copyright

© 2021, Schaum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,218
    Page views
  • 200
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Rawan AlSubaie et al.
    Research Article Updated

    Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons and avoids prefrontal cortex-projecting vH neurons, while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.

    1. Cell Biology
    2. Neuroscience
    Angela Kim et al.
    Research Article Updated

    Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.