An integrative model of cardiometabolic traits identifies two types of metabolic syndrome

  1. Amit Frishberg
  2. Inge van den Munckhof
  3. Rob ter Horst
  4. Kiki Schraa
  5. Leo AB Joosten
  6. Joost HW Rutten
  7. Adrian C Iancu
  8. Ioana M Dregoesc
  9. Bogdan A Tigu
  10. Mihai G Netea
  11. Niels Peter Riksen  Is a corresponding author
  12. Irit Gat-Viks  Is a corresponding author
  1. Tel Aviv University, Israel
  2. Radboud University Medical Center, Netherlands
  3. University of Medicine and Pharmacy, Romania

Abstract

Human diseases arise in a complex ecosystem composed of disease mechanisms and the whole-body state. However, the precise nature of the whole-body state and its relations with disease remain obscure. Here we map similarities among clinical parameters in normal physiological settings, including a large collection of metabolic, hemodynamic and immune parameters, and then use the mapping to dissect phenotypic states. We find that the whole-body state is faithfully represented by a quantitative two-dimensional model. One component of the whole-body state represents 'metabolic syndrome' (MetS) – a conventional way to determine the cardiometabolic state. The second component is decoupled from the classical MetS, suggesting a novel 'non-classical MetS' that is characterized by dozens of parameters, including dysregulated lipoprotein parameters (e.g. high LDL- cholesterol and low free cholesterol in small HDL particles) and attenuated cytokine responses of PBMCs to ex vivo stimulations. Both components are associated with disease, but differ in their particular associations, thus opening new avenues for improved personalized diagnosis and treatment. These results provide a practical paradigm to describe whole-body states and to dissect complex disease within the ecosystem of the human body.

Data availability

Both the obesity cohort and the normal BMI cohort were part of the Human Functional Genomics Project (www.humanfunctionalgenomics.org) and has been previously published.The coronary-atherosclerosis cohort was collected as part of the HORIZON 2020 European Research Program - "REPROGRAM: Targeting epigenetic REPROGRamming of innate immune cells in Atherosclerosis Management and other chronic inflammatory diseases".SLE sequencing public datasets used in our analysis: GSE65391, GSE49454.

Article and author information

Author details

  1. Amit Frishberg

    Life Sciences, Tel Aviv University, Tel-Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Inge van den Munckhof

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Rob ter Horst

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Kiki Schraa

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Leo AB Joosten

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6166-9830
  6. Joost HW Rutten

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Adrian C Iancu

    Department of Cardiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
    Competing interests
    The authors declare that no competing interests exist.
  8. Ioana M Dregoesc

    Department of Cardiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
    Competing interests
    The authors declare that no competing interests exist.
  9. Bogdan A Tigu

    Department of Cardiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9397-0791
  10. Mihai G Netea

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Niels Peter Riksen

    Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    For correspondence
    niels.riksen@radboudumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9197-8124
  12. Irit Gat-Viks

    Life Sciences, Tel Aviv University, Tel-Aviv, Israel
    For correspondence
    iritgv@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5431-6444

Funding

European Commission (637885)

  • Amit Frishberg
  • Irit Gat-Viks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Frishberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,261
    views
  • 238
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amit Frishberg
  2. Inge van den Munckhof
  3. Rob ter Horst
  4. Kiki Schraa
  5. Leo AB Joosten
  6. Joost HW Rutten
  7. Adrian C Iancu
  8. Ioana M Dregoesc
  9. Bogdan A Tigu
  10. Mihai G Netea
  11. Niels Peter Riksen
  12. Irit Gat-Viks
(2021)
An integrative model of cardiometabolic traits identifies two types of metabolic syndrome
eLife 10:e61710.
https://doi.org/10.7554/eLife.61710

Share this article

https://doi.org/10.7554/eLife.61710

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.