1. Computational and Systems Biology
  2. Medicine
Download icon

Reproducible analysis of disease space via principal components using the novel R package syndRomics

  1. Abel Torres Espín  Is a corresponding author
  2. Austin Chou
  3. Russell Huie
  4. Nikolaos Kyritsis
  5. Pavan S Upadhyayula
  6. Adam Ferguson  Is a corresponding author
  1. University of California, San Francisco, United States
  2. University of California, San Diego, United States
Tools and Resources
  • Cited 0
  • Views 341
  • Annotations
Cite this article as: eLife 2021;10:e61812 doi: 10.7554/eLife.61812

Abstract

Biomedical data are usually analyzed at the univariate level, focused on a single primary outcome measure to provide insight into systems biology, complex disease states, and precision medicine opportunities. More broadly, these complex biological and disease states can be detected as common factors emerging from the relationships among measured variables using multivariate approaches. 'Syndromics' refers to an analytical framework for measuring disease states using principal component analysis and related multivariate statistics as primary tools for extracting underlying disease patterns. A key part of the syndromic workflow is the interpretation, the visualization, and the study of robustness of the main components that characterize the disease space. We present a new software package, syndRomics, an open-source R package with utility for component visualization, interpretation, and stability for syndromic analysis. We document the implementation of syndRomics and illustrate the use of the package in case studies of neurological trauma data.

Article and author information

Author details

  1. Abel Torres Espín

    Neurological Surgery, University of California, San Francisco, San Francisco, United States
    For correspondence
    abel.torresespin@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Austin Chou

    Neurological Surgery, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Russell Huie

    Neurological Surgery, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nikolaos Kyritsis

    Neurological Surgery, University of California, San Francisco, San Francsico, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pavan S Upadhyayula

    School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Adam Ferguson

    Neurological Surgery, University of California, San Francisco, San Francisco, United States
    For correspondence
    adam.ferguson@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7102-1608

Funding

National Institute of Health (NS106899)

  • Adam Ferguson

National Institute of Health (NS088475)

  • Adam Ferguson

Veterans Affairs (1I01RX002245)

  • Adam Ferguson

Veterans Affairs (I01RX002787)

  • Adam Ferguson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: August 5, 2020
  2. Accepted: January 13, 2021
  3. Accepted Manuscript published: January 14, 2021 (version 1)

Copyright

© 2021, Torres Espín et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 341
    Page views
  • 73
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Xiaochuan Zhao et al.
    Research Article Updated

    The DNA-binding protein H-NS is a pleiotropic gene regulator in gram-negative bacteria. Through its capacity to sense temperature and other environmental factors, H-NS allows pathogens like Salmonella to adapt their gene expression to their presence inside or outside warm-blooded hosts. To investigate how this sensing mechanism may have evolved to fit different bacterial lifestyles, we compared H-NS orthologs from bacteria that infect humans, plants, and insects, and from bacteria that live on a deep-sea hypothermal vent. The combination of biophysical characterization, high-resolution proton-less nuclear magnetic resonance spectroscopy, and molecular simulations revealed, at an atomistic level, how the same general mechanism was adapted to specific habitats and lifestyles. In particular, we demonstrate how environment-sensing characteristics arise from specifically positioned intra- or intermolecular electrostatic interactions. Our integrative approach clarified the exact modus operandi for H-NS-mediated environmental sensing and suggested that this sensing mechanism resulted from the exaptation of an ancestral protein feature.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Reza K Hammond et al.
    Research Article Updated

    To uncover novel significant association signals (p<5×10−8), genome-wide association studies (GWAS) requires increasingly larger sample sizes to overcome statistical correction for multiple testing. As an alternative, we aimed to identify associations among suggestive signals (5 × 10−8≤p<5×10−4) in increasingly powered GWAS efforts using chromatin accessibility and direct contact with gene promoters as biological constraints. We conducted retrospective analyses of three GIANT BMI GWAS efforts using ATAC-seq and promoter-focused Capture C data from human adipocytes and embryonic stem cell (ESC)-derived hypothalamic-like neurons. This approach, with its extremely low false-positive rate, identified 15 loci at p<5×10−5 in the 2010 GWAS, of which 13 achieved genome-wide significance by 2018, including at NAV1, MTIF3, and ADCY3. Eighty percent of constrained 2015 loci achieved genome-wide significance in 2018. We observed similar results in waist-to-hip ratio analyses. In conclusion, biological constraints on sub-significant GWAS signals can reveal potentially true-positive loci for further investigation in existing data sets without increasing sample size.