NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA

  1. Zachary F Mandell
  2. Reid T Oshiro
  3. Alexander V Yakhnin
  4. Rishi Vishwakarma
  5. Mikhail Kashlev
  6. Daniel B Kearns
  7. Paul Babitzke  Is a corresponding author
  1. The Pennsylvania State University, United States
  2. Indiana University, United States
  3. National Cancer Institute, United States

Abstract

NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, DnusG, and NusA depletion DnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.

Data availability

RNA-seq data were deposited in GEO under accession number GSE154522. All other data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Zachary F Mandell

    Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Reid T Oshiro

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander V Yakhnin

    NCI RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7313-7054
  4. Rishi Vishwakarma

    Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mikhail Kashlev

    NCI RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel B Kearns

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul Babitzke

    Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    For correspondence
    pxb28@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2481-1062

Funding

National Institutes of Health (GM098399)

  • Paul Babitzke

National Institutes of Health (GM131783)

  • Daniel B Kearns

National Institutes of Health (intramural)

  • Mikhail Kashlev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,494
    views
  • 475
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary F Mandell
  2. Reid T Oshiro
  3. Alexander V Yakhnin
  4. Rishi Vishwakarma
  5. Mikhail Kashlev
  6. Daniel B Kearns
  7. Paul Babitzke
(2021)
NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA
eLife 10:e61880.
https://doi.org/10.7554/eLife.61880

Share this article

https://doi.org/10.7554/eLife.61880

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.