Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis
Abstract
Alternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated cis-regulatory elements. This event is associated with dramatic changes in chromatin accessibility and transcriptional reprogramming. In contrast, the global loss of H3K27me3 in the haploid form shapes a chromatin accessibility landscape that is poised to re-initiate the transition back to diploid life after fertilization. Hence, distinct epigenetic reprogramming events rewire transcription through major reorganization of the regulatory epigenome to guide the alternation of generations in flowering plants.
Data availability
Deep-sequencing data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession code GSE155369. Re-analysis of previously published DNA methylomes from dme-2/+ pollen (Ibarra et al., 2012), and siRNAs from leaves (Papareddy et al., 2020) and pollen (Borges et al., 2018; Slotkin et al., 2009) were deposited in the GEO under accession code GSE155369.
-
Epigenetic reprogramming rewires transcription during the alternation of generations in ArabidopsisNCBI Gene Expression Omnibus, GSE155369.
-
Active DNA demethylation in plant companion cells reinforces transposon methylation in gametesNCBI Gene Expression Omnibus, GSE38935.
-
Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatinNCBI Gene Expression Omnibus, GSE120669.
-
Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in ArabidopsisNCBI Gene Expression Omnibus, GSE106117.
-
Epigenetic reprogramming and small RNA silencing of transposable elements in pollenNCBI Gene Expression Omnibus, GSE61028.
Article and author information
Author details
Funding
Austrian Science Fund (P26887)
- Frédéric Berger
Austrian Science Fund (I 4258)
- Frédéric Berger
Austrian Science Fund (I2163-B16)
- Frédéric Berger
Austrian Science Fund (M1818)
- Michael Borg
European Commission (ERC 637888)
- Michael D Nodine
Biotechnology and Biological Sciences Research Council (BB/I011269/1)
- David Twell
Biotechnology and Biological Sciences Research Council (BB/N005090)
- David Twell
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Richard Amasino, University of Wisconsin Madison, United States
Version history
- Received: August 7, 2020
- Accepted: January 25, 2021
- Accepted Manuscript published: January 25, 2021 (version 1)
- Version of Record published: March 1, 2021 (version 2)
Copyright
© 2021, Borg et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,310
- Page views
-
- 793
- Downloads
-
- 34
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Neuroscience
The hippocampus executes crucial functions from declarative memory to adaptive behaviors associated with cognition and emotion. However, the mechanisms of how morphogenesis and functions along the hippocampal dorsoventral axis are differentiated and integrated are still largely unclear. Here, we show that Nr2f1 and Nr2f2 genes are distinctively expressed in the dorsal and ventral hippocampus, respectively. The loss of Nr2f2 results in ectopic CA1/CA3 domains in the ventral hippocampus. The deficiency of Nr2f1 leads to the failed specification of dorsal CA1, among which there are place cells. The deletion of both Nr2f genes causes almost agenesis of the hippocampus with abnormalities of trisynaptic circuit and adult neurogenesis. Moreover, Nr2f1/2 may cooperate to guarantee appropriate morphogenesis and function of the hippocampus by regulating the Lhx5-Lhx2 axis. Our findings revealed a novel mechanism that Nr2f1 and Nr2f2 converge to govern the differentiation and integration of distinct characteristics of the hippocampus in mice.
-
- Developmental Biology
- Evolutionary Biology
Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.