Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis

  1. Michael Borg
  2. Ranjith K Papareddy
  3. Rodolphe Dombey
  4. Elin Axelsson
  5. Michael D Nodine
  6. David Twell
  7. Frédéric Berger  Is a corresponding author
  1. Gregor Mendel Institute, Austria
  2. University of Leicester, United Kingdom

Abstract

Alternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated cis-regulatory elements. This event is associated with dramatic changes in chromatin accessibility and transcriptional reprogramming. In contrast, the global loss of H3K27me3 in the haploid form shapes a chromatin accessibility landscape that is poised to re-initiate the transition back to diploid life after fertilization. Hence, distinct epigenetic reprogramming events rewire transcription through major reorganization of the regulatory epigenome to guide the alternation of generations in flowering plants.

Data availability

Deep-sequencing data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession code GSE155369. Re-analysis of previously published DNA methylomes from dme-2/+ pollen (Ibarra et al., 2012), and siRNAs from leaves (Papareddy et al., 2020) and pollen (Borges et al., 2018; Slotkin et al., 2009) were deposited in the GEO under accession code GSE155369.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Michael Borg

    Gregor Mendel Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3982-3843
  2. Ranjith K Papareddy

    Gregor Mendel Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Rodolphe Dombey

    Gregor Mendel Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3670-4128
  4. Elin Axelsson

    Gregor Mendel Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4382-1880
  5. Michael D Nodine

    Gregor Mendel Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. David Twell

    Department of Genetics, University of Leicester, Leicester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Frédéric Berger

    Gregor Mendel Institute, Vienna, Austria
    For correspondence
    Frederic.berger@gmi.oeaw.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3609-8260

Funding

Austrian Science Fund (P26887)

  • Frédéric Berger

Austrian Science Fund (I 4258)

  • Frédéric Berger

Austrian Science Fund (I2163-B16)

  • Frédéric Berger

Austrian Science Fund (M1818)

  • Michael Borg

European Commission (ERC 637888)

  • Michael D Nodine

Biotechnology and Biological Sciences Research Council (BB/I011269/1)

  • David Twell

Biotechnology and Biological Sciences Research Council (BB/N005090)

  • David Twell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Borg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,220
    views
  • 908
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.61894

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.