Real-time, low-latency closed-loop feedback using markerless posture tracking

  1. Gary A Kane
  2. Gonçalo Lopes
  3. Jonny L Saunders
  4. Alexander Mathis
  5. Mackenzie W Mathis  Is a corresponding author
  1. Harvard University, United States
  2. NeuroGears, United Kingdom
  3. University of Oregon, United States
  4. EPFL, Switzerland

Abstract

The ability to control a behavioral task or stimulate neural activity based on animal behavior in real-time is an important tool for experimental neuroscientists. Ideally, such tools are noninvasive, low-latency, and provide interfaces to trigger external hardware based on posture. Recent advances in pose estimation with deep learning allows researchers to train deep neural networks to accurately quantify a wide variety of animal behaviors. Here we provide a new DeepLabCut-Live! package that achieves low-latency real-time pose estimation (within 15 ms, >100 FPS), with an additional forward-prediction module that achieves zero-latency feedback, and a dynamic-cropping mode that allows for higher inference speeds. We also provide three options for using this tool with ease: (1) a stand-alone GUI (called DLC-Live! GUI, and integration into (2) Bonsai and (3) AutoPilot. Lastly, we benchmarked performance on a wide range of systems so that experimentalists can easily decide what hardware is required for their needs.

Data availability

All models, data, test scripts and software is already released and made freely available on GitHub: https://github.com/DeepLabCut/DeepLabCut-live

Article and author information

Author details

  1. Gary A Kane

    The Rowland Institute at Harvard, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7703-5055
  2. Gonçalo Lopes

    NeuroGears, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0731-4945
  3. Jonny L Saunders

    Institute of Neuroscience, Department of Psychology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander Mathis

    Life Sciences, EPFL, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3777-2202
  5. Mackenzie W Mathis

    Brain Mind Institute, EPFL, Genève, Switzerland
    For correspondence
    mackenzie.mathis@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7368-4456

Funding

Chan Zuckerberg Initiative (EOSS)

  • Alexander Mathis
  • Mackenzie W Mathis

National Science Foundation (1309047)

  • Jonny L Sanders

The Rowland Institute at Harvard, Harvard University

  • Gary A Kane
  • Alexander Mathis
  • Mackenzie W Mathis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gordon J Berman, Emory University, United States

Ethics

Animal experimentation: All mouse work was carried out under the permission of the IACUC at Harvard University (#17-07-309). Dog videos and feedback was exempt from IACUC approval (with conformation with IACUC).

Version history

  1. Received: August 8, 2020
  2. Accepted: December 6, 2020
  3. Accepted Manuscript published: December 8, 2020 (version 1)
  4. Accepted Manuscript updated: December 9, 2020 (version 2)
  5. Version of Record published: January 4, 2021 (version 3)

Copyright

© 2020, Kane et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,387
    views
  • 1,433
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gary A Kane
  2. Gonçalo Lopes
  3. Jonny L Saunders
  4. Alexander Mathis
  5. Mackenzie W Mathis
(2020)
Real-time, low-latency closed-loop feedback using markerless posture tracking
eLife 9:e61909.
https://doi.org/10.7554/eLife.61909

Share this article

https://doi.org/10.7554/eLife.61909

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article

    Runs of homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE, to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 SNPs and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended HLA region and autoimmune disorders. We found an association between a diplotype covering the HFE gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (P-value=1.82×10-11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.