Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3

  1. Ksenia Finogenova
  2. Jacques Bonnet
  3. Simon Poepsel
  4. Ingmar B Schäfer
  5. Katja Finkl
  6. Katharina Schmid
  7. Claudia Litz
  8. Mike Strauss
  9. Christian Benda
  10. Jürg Müller  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. University of California, Berkeley, United States
  3. McGill University, Canada

Abstract

Repression of genes by Polycomb requires that PRC2 modifies their chromatin by trimethylating lysine 27 on histone H3 (H3K27me3). At transcriptionally active genes, di- and trimethylated H3K36 inhibit PRC2. Here, the cryo-EM structure of PRC2 on dinucleosomes reveals how binding of its catalytic subunit EZH2 to nucleosomal DNA orients the H3 N-terminus via an extended network of interactions to place H3K27 into the active site. Unmodified H3K36 occupies a critical position in the EZH2-DNA interface. Mutation of H3K36 to arginine or alanine inhibits H3K27 methylation by PRC2 on nucleosomes in vitro. Accordingly, Drosophila H3K36A and H3K36R mutants show reduced levels of H3K27me3 and defective Polycomb repression of HOX genes. The relay of interactions between EZH2, the nucleosomal DNA and the H3 N-terminus therefore creates the geometry that permits allosteric inhibition of PRC2 by methylated H3K36 in transcriptionally active chromatin.

Data availability

The sequence datasets generated in this study have been deposited in GEO (accession number: GSE148254). The protein structure data reported in this study have been deposited in PDB under the accession code 7AT8 and in the EMDB under the accession codes EMD-11910 and EMD-11912

Article and author information

Author details

  1. Ksenia Finogenova

    Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacques Bonnet

    Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Simon Poepsel

    California Institute for Quantitative Biology (QB3), Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ingmar B Schäfer

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Katja Finkl

    Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Katharina Schmid

    Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudia Litz

    Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Mike Strauss

    Anatomy and Cell Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Christian Benda

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Jürg Müller

    Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    muellerj@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2391-4641

Funding

Deutsche Forschungsgemeinschaft (SFB1064)

  • Jürg Müller

Max-Planck-Gesellschaft

  • Jürg Müller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jerry L. Workman, Stowers Institute for Medical Research, United States

Version history

  1. Received: August 10, 2020
  2. Accepted: November 18, 2020
  3. Accepted Manuscript published: November 19, 2020 (version 1)
  4. Version of Record published: December 9, 2020 (version 2)
  5. Version of Record updated: December 11, 2020 (version 3)

Copyright

© 2020, Finogenova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,763
    views
  • 791
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ksenia Finogenova
  2. Jacques Bonnet
  3. Simon Poepsel
  4. Ingmar B Schäfer
  5. Katja Finkl
  6. Katharina Schmid
  7. Claudia Litz
  8. Mike Strauss
  9. Christian Benda
  10. Jürg Müller
(2020)
Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3
eLife 9:e61964.
https://doi.org/10.7554/eLife.61964

Share this article

https://doi.org/10.7554/eLife.61964

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.