The temporal representation of experience in subjective mood

  1. Hanna Keren  Is a corresponding author
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
  1. National Institutes of Health / National Institute of Mental Health, United States
  2. University College London, United Kingdom

Abstract

Humans refer to their mood state regularly in day-to-day as well as clinical interactions. Theoretical accounts suggest that when reporting on our mood we integrate over the history of our experiences; yet, the temporal structure of this integration remains unexamined. Here we use a computational approach to quantitatively answer this question and show that early events exert a stronger influence on reported mood compared to recent events. We show that a Primacy model accounts better for mood reports compared to a range of alternative temporal representations across random, consistent or dynamic reward environments, different age groups and in both healthy and depressed participants. Moreover, we find evidence for neural encoding of the Primacy, but not the Recency, model in frontal brain regions related to mood regulation. These findings hold implications for the timing of events in experimental or clinical settings and suggest new directions for individualized mood interventions.

Data availability

To enable the reproducibility of this study we made scripts and datasets available online at: https://osf.io/vw7sz/?view_only=e8cb4ef6782e4735815867203971994a.This repository includes: Mood modeling code; Source-data of Figure 2 (tasks trial-wise values and mood ratings values of all participants); Neural analyses code; Files of the whole-brain neural images presented in Figure 4.The link to this repository is provided in the Methods (section 7. Availability of code and datasets), and figure captions as well as other sections of the Methods refer to it.

The following data sets were generated

Article and author information

Author details

  1. Hanna Keren

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    For correspondence
    Hanna.keren@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4122-656X
  2. Charles Zheng

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David C Jangraw

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katharine Chang

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aria Vitale

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robb B Rutledge

    Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7337-5039
  7. Francisco Pereira

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dylan Nielson

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Argyris Stringaris

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Hanna Keren

Brain and Behavior Research Foundation

  • Robb B Rutledge

National Institute of Mental Health (Intramural Research Program)

  • Charles Zheng

National Institute of Mental Health (Intramural Research Program)

  • David C Jangraw

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Katharine Chang

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Aria Vitale

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Dylan Nielson

National Institute of Mental Health (Intramural Research Program)

  • Francisco Pereira

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Argyris Stringaris

Wellcome Trust

  • Robb B Rutledge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan Roiser, University College London, United Kingdom

Ethics

Human subjects: All participants signed informed consent to a protocol approved by the NIH Institutional Review Board. The protocol is registered under the clinical trial no. NCT03388606.

Version history

  1. Received: August 12, 2020
  2. Accepted: June 2, 2021
  3. Accepted Manuscript published: June 15, 2021 (version 1)
  4. Accepted Manuscript updated: June 18, 2021 (version 2)
  5. Version of Record published: June 29, 2021 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,727
    views
  • 384
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanna Keren
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
(2021)
The temporal representation of experience in subjective mood
eLife 10:e62051.
https://doi.org/10.7554/eLife.62051

Share this article

https://doi.org/10.7554/eLife.62051

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.