The temporal representation of experience in subjective mood

  1. Hanna Keren  Is a corresponding author
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
  1. National Institutes of Health / National Institute of Mental Health, United States
  2. University College London, United Kingdom

Abstract

Humans refer to their mood state regularly in day-to-day as well as clinical interactions. Theoretical accounts suggest that when reporting on our mood we integrate over the history of our experiences; yet, the temporal structure of this integration remains unexamined. Here we use a computational approach to quantitatively answer this question and show that early events exert a stronger influence on reported mood compared to recent events. We show that a Primacy model accounts better for mood reports compared to a range of alternative temporal representations across random, consistent or dynamic reward environments, different age groups and in both healthy and depressed participants. Moreover, we find evidence for neural encoding of the Primacy, but not the Recency, model in frontal brain regions related to mood regulation. These findings hold implications for the timing of events in experimental or clinical settings and suggest new directions for individualized mood interventions.

Data availability

To enable the reproducibility of this study we made scripts and datasets available online at: https://osf.io/vw7sz/?view_only=e8cb4ef6782e4735815867203971994a.This repository includes: Mood modeling code; Source-data of Figure 2 (tasks trial-wise values and mood ratings values of all participants); Neural analyses code; Files of the whole-brain neural images presented in Figure 4.The link to this repository is provided in the Methods (section 7. Availability of code and datasets), and figure captions as well as other sections of the Methods refer to it.

The following data sets were generated

Article and author information

Author details

  1. Hanna Keren

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    For correspondence
    Hanna.keren@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4122-656X
  2. Charles Zheng

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David C Jangraw

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katharine Chang

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aria Vitale

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robb B Rutledge

    Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7337-5039
  7. Francisco Pereira

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dylan Nielson

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Argyris Stringaris

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Hanna Keren

Brain and Behavior Research Foundation

  • Robb B Rutledge

National Institute of Mental Health (Intramural Research Program)

  • Charles Zheng

National Institute of Mental Health (Intramural Research Program)

  • David C Jangraw

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Katharine Chang

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Aria Vitale

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Dylan Nielson

National Institute of Mental Health (Intramural Research Program)

  • Francisco Pereira

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Argyris Stringaris

Wellcome Trust

  • Robb B Rutledge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants signed informed consent to a protocol approved by the NIH Institutional Review Board. The protocol is registered under the clinical trial no. NCT03388606.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,158
    views
  • 419
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanna Keren
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
(2021)
The temporal representation of experience in subjective mood
eLife 10:e62051.
https://doi.org/10.7554/eLife.62051

Share this article

https://doi.org/10.7554/eLife.62051

Further reading

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.