The temporal representation of experience in subjective mood
Abstract
Humans refer to their mood state regularly in day-to-day as well as clinical interactions. Theoretical accounts suggest that when reporting on our mood we integrate over the history of our experiences; yet, the temporal structure of this integration remains unexamined. Here we use a computational approach to quantitatively answer this question and show that early events exert a stronger influence on reported mood compared to recent events. We show that a Primacy model accounts better for mood reports compared to a range of alternative temporal representations across random, consistent or dynamic reward environments, different age groups and in both healthy and depressed participants. Moreover, we find evidence for neural encoding of the Primacy, but not the Recency, model in frontal brain regions related to mood regulation. These findings hold implications for the timing of events in experimental or clinical settings and suggest new directions for individualized mood interventions.
Data availability
To enable the reproducibility of this study we made scripts and datasets available online at: https://osf.io/vw7sz/?view_only=e8cb4ef6782e4735815867203971994a.This repository includes: Mood modeling code; Source-data of Figure 2 (tasks trial-wise values and mood ratings values of all participants); Neural analyses code; Files of the whole-brain neural images presented in Figure 4.The link to this repository is provided in the Methods (section 7. Availability of code and datasets), and figure captions as well as other sections of the Methods refer to it.
Article and author information
Author details
Funding
National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)
- Hanna Keren
Brain and Behavior Research Foundation
- Robb B Rutledge
National Institute of Mental Health (Intramural Research Program)
- Charles Zheng
National Institute of Mental Health (Intramural Research Program)
- David C Jangraw
National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)
- Katharine Chang
National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)
- Aria Vitale
National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)
- Dylan Nielson
National Institute of Mental Health (Intramural Research Program)
- Francisco Pereira
National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)
- Argyris Stringaris
Wellcome Trust
- Robb B Rutledge
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All participants signed informed consent to a protocol approved by the NIH Institutional Review Board. The protocol is registered under the clinical trial no. NCT03388606.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 4,265
- views
-
- 432
- downloads
-
- 18
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.
-
- Neuroscience
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.