The temporal representation of experience in subjective mood

  1. Hanna Keren  Is a corresponding author
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
  1. National Institutes of Health / National Institute of Mental Health, United States
  2. University College London, United Kingdom

Abstract

Humans refer to their mood state regularly in day-to-day as well as clinical interactions. Theoretical accounts suggest that when reporting on our mood we integrate over the history of our experiences; yet, the temporal structure of this integration remains unexamined. Here we use a computational approach to quantitatively answer this question and show that early events exert a stronger influence on reported mood compared to recent events. We show that a Primacy model accounts better for mood reports compared to a range of alternative temporal representations across random, consistent or dynamic reward environments, different age groups and in both healthy and depressed participants. Moreover, we find evidence for neural encoding of the Primacy, but not the Recency, model in frontal brain regions related to mood regulation. These findings hold implications for the timing of events in experimental or clinical settings and suggest new directions for individualized mood interventions.

Data availability

To enable the reproducibility of this study we made scripts and datasets available online at: https://osf.io/vw7sz/?view_only=e8cb4ef6782e4735815867203971994a.This repository includes: Mood modeling code; Source-data of Figure 2 (tasks trial-wise values and mood ratings values of all participants); Neural analyses code; Files of the whole-brain neural images presented in Figure 4.The link to this repository is provided in the Methods (section 7. Availability of code and datasets), and figure captions as well as other sections of the Methods refer to it.

The following data sets were generated

Article and author information

Author details

  1. Hanna Keren

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    For correspondence
    Hanna.keren@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4122-656X
  2. Charles Zheng

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David C Jangraw

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katharine Chang

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aria Vitale

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robb B Rutledge

    Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7337-5039
  7. Francisco Pereira

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dylan Nielson

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Argyris Stringaris

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Hanna Keren

Brain and Behavior Research Foundation

  • Robb B Rutledge

National Institute of Mental Health (Intramural Research Program)

  • Charles Zheng

National Institute of Mental Health (Intramural Research Program)

  • David C Jangraw

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Katharine Chang

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Aria Vitale

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Dylan Nielson

National Institute of Mental Health (Intramural Research Program)

  • Francisco Pereira

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Argyris Stringaris

Wellcome Trust

  • Robb B Rutledge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants signed informed consent to a protocol approved by the NIH Institutional Review Board. The protocol is registered under the clinical trial no. NCT03388606.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,091
    views
  • 417
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanna Keren
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
(2021)
The temporal representation of experience in subjective mood
eLife 10:e62051.
https://doi.org/10.7554/eLife.62051

Share this article

https://doi.org/10.7554/eLife.62051

Further reading

    1. Developmental Biology
    2. Neuroscience
    Odessa R Yabut, Jessica Arela ... Samuel J Pleasure
    Research Article

    Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.

    1. Neuroscience
    Lanfang Liu, Jiahao Jiang ... Guosheng Ding
    Research Article

    Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space. These states are, respectively, characterized by high activities in the sensory-motor (State #1), bilateral temporal (State #2), and default mode networks (DMN; State #3) regions, with State #2 acting as a transitional hub. The three states are selectively modulated by the acoustic, word-level semantic, and clause-level semantic properties of the narrative. Moreover, the alignment with both the best performer and the group-mean in brain state expression can predict participants’ narrative comprehension scores measured from the post-scan recall. These results are reproducible with different brain network atlas and generalizable to two datasets consisting of young and older adults. Our study suggests that the brain underlies narrative comprehension by switching through a tripartite state space, with each state probably dedicated to a specific component of language faculty, and effective narrative comprehension relies on engaging those states in a timely manner.