The temporal representation of experience in subjective mood

  1. Hanna Keren  Is a corresponding author
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
  1. National Institutes of Health / National Institute of Mental Health, United States
  2. University College London, United Kingdom

Abstract

Humans refer to their mood state regularly in day-to-day as well as clinical interactions. Theoretical accounts suggest that when reporting on our mood we integrate over the history of our experiences; yet, the temporal structure of this integration remains unexamined. Here we use a computational approach to quantitatively answer this question and show that early events exert a stronger influence on reported mood compared to recent events. We show that a Primacy model accounts better for mood reports compared to a range of alternative temporal representations across random, consistent or dynamic reward environments, different age groups and in both healthy and depressed participants. Moreover, we find evidence for neural encoding of the Primacy, but not the Recency, model in frontal brain regions related to mood regulation. These findings hold implications for the timing of events in experimental or clinical settings and suggest new directions for individualized mood interventions.

Data availability

To enable the reproducibility of this study we made scripts and datasets available online at: https://osf.io/vw7sz/?view_only=e8cb4ef6782e4735815867203971994a.This repository includes: Mood modeling code; Source-data of Figure 2 (tasks trial-wise values and mood ratings values of all participants); Neural analyses code; Files of the whole-brain neural images presented in Figure 4.The link to this repository is provided in the Methods (section 7. Availability of code and datasets), and figure captions as well as other sections of the Methods refer to it.

The following data sets were generated

Article and author information

Author details

  1. Hanna Keren

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    For correspondence
    Hanna.keren@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4122-656X
  2. Charles Zheng

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David C Jangraw

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katharine Chang

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aria Vitale

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robb B Rutledge

    Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7337-5039
  7. Francisco Pereira

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dylan Nielson

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Argyris Stringaris

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Hanna Keren

Brain and Behavior Research Foundation

  • Robb B Rutledge

National Institute of Mental Health (Intramural Research Program)

  • Charles Zheng

National Institute of Mental Health (Intramural Research Program)

  • David C Jangraw

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Katharine Chang

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Aria Vitale

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Dylan Nielson

National Institute of Mental Health (Intramural Research Program)

  • Francisco Pereira

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Argyris Stringaris

Wellcome Trust

  • Robb B Rutledge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants signed informed consent to a protocol approved by the NIH Institutional Review Board. The protocol is registered under the clinical trial no. NCT03388606.

Reviewing Editor

  1. Jonathan Roiser, University College London, United Kingdom

Publication history

  1. Received: August 12, 2020
  2. Accepted: June 2, 2021
  3. Accepted Manuscript published: June 15, 2021 (version 1)
  4. Accepted Manuscript updated: June 18, 2021 (version 2)
  5. Version of Record published: June 29, 2021 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,795
    Page views
  • 305
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanna Keren
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
(2021)
The temporal representation of experience in subjective mood
eLife 10:e62051.
https://doi.org/10.7554/eLife.62051

Further reading

    1. Neuroscience
    Cecilia Gallego-Carracedo et al.
    Research Article

    The spiking activity of populations of cortical neurons is well described by the dynamics of a small number of population-wide covariance patterns, the 'latent dynamics'. These latent dynamics are largely driven by the same correlated synaptic currents across the circuit that determine the generation of local field potentials (LFP). Yet, the relationship between latent dynamics and LFPs remains largely unexplored. Here, we characterised this relationship for three different regions of primate sensorimotor cortex during reaching. The correlation between latent dynamics and LFPs was frequency-dependent and varied across regions. However, for any given region, this relationship remained stable throughout the behaviour: in each of primary motor and premotor cortices, the LFP-latent dynamics correlation profile was remarkably similar between movement planning and execution. These robust associations between LFPs and neural population latent dynamics help bridge the wealth of studies reporting neural correlates of behaviour using either type of recordings.

    1. Neuroscience
    Jonathan S Tsay et al.
    Review Article

    Multiple learning processes contribute to successful goal-directed actions in the face of changing physiological states, biomechanical constraints, and environmental contexts. Amongst these processes, implicit sensorimotor adaptation is of primary importance, ensuring that movements remain well-calibrated and accurate. A large body of work on reaching movements has emphasized how adaptation centers on an iterative process designed to minimize visual errors. The role of proprioception has been largely neglected, thought to play a passive role in which proprioception is affected by the visual error but does not directly contribute to adaptation. Here, we present an alternative to this visuo-centric framework, outlining a model in which implicit adaptation acts to minimize a proprioceptive error, the distance between the perceived hand position and its intended goal. This proprioceptive re-alignment model (PReMo) is consistent with many phenomena that have previously been interpreted in terms of learning from visual errors, and offers a parsimonious account of numerous unexplained phenomena. Cognizant that the evidence for PReMo rests on correlational studies, we highlight core predictions to be tested in future experiments, as well as note potential challenges for a proprioceptive-based perspective on implicit adaptation.