The temporal representation of experience in subjective mood

  1. Hanna Keren  Is a corresponding author
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
  1. National Institutes of Health / National Institute of Mental Health, United States
  2. University College London, United Kingdom

Abstract

Humans refer to their mood state regularly in day-to-day as well as clinical interactions. Theoretical accounts suggest that when reporting on our mood we integrate over the history of our experiences; yet, the temporal structure of this integration remains unexamined. Here we use a computational approach to quantitatively answer this question and show that early events exert a stronger influence on reported mood compared to recent events. We show that a Primacy model accounts better for mood reports compared to a range of alternative temporal representations across random, consistent or dynamic reward environments, different age groups and in both healthy and depressed participants. Moreover, we find evidence for neural encoding of the Primacy, but not the Recency, model in frontal brain regions related to mood regulation. These findings hold implications for the timing of events in experimental or clinical settings and suggest new directions for individualized mood interventions.

Data availability

To enable the reproducibility of this study we made scripts and datasets available online at: https://osf.io/vw7sz/?view_only=e8cb4ef6782e4735815867203971994a.This repository includes: Mood modeling code; Source-data of Figure 2 (tasks trial-wise values and mood ratings values of all participants); Neural analyses code; Files of the whole-brain neural images presented in Figure 4.The link to this repository is provided in the Methods (section 7. Availability of code and datasets), and figure captions as well as other sections of the Methods refer to it.

The following data sets were generated

Article and author information

Author details

  1. Hanna Keren

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    For correspondence
    Hanna.keren@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4122-656X
  2. Charles Zheng

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David C Jangraw

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katharine Chang

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aria Vitale

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robb B Rutledge

    Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7337-5039
  7. Francisco Pereira

    Machine Learning Team, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dylan Nielson

    Section on Clinical and Computational Psychiatry, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Argyris Stringaris

    Emotion and Development Branch, National Institutes of Health / National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Hanna Keren

Brain and Behavior Research Foundation

  • Robb B Rutledge

National Institute of Mental Health (Intramural Research Program)

  • Charles Zheng

National Institute of Mental Health (Intramural Research Program)

  • David C Jangraw

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Katharine Chang

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Aria Vitale

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Dylan Nielson

National Institute of Mental Health (Intramural Research Program)

  • Francisco Pereira

National Institute of Mental Health (Intramural Research Program,ZIAMH002957-01)

  • Argyris Stringaris

Wellcome Trust

  • Robb B Rutledge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants signed informed consent to a protocol approved by the NIH Institutional Review Board. The protocol is registered under the clinical trial no. NCT03388606.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,135
    views
  • 419
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanna Keren
  2. Charles Zheng
  3. David C Jangraw
  4. Katharine Chang
  5. Aria Vitale
  6. Robb B Rutledge
  7. Francisco Pereira
  8. Dylan Nielson
  9. Argyris Stringaris
(2021)
The temporal representation of experience in subjective mood
eLife 10:e62051.
https://doi.org/10.7554/eLife.62051

Share this article

https://doi.org/10.7554/eLife.62051

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.