1. Cell Biology
Download icon

Rapid adaptation of endocytosis, exocytosis and eisosomes after an acute increase in membrane tension in yeast cells

  1. Joël Lemière
  2. Yuan Ren
  3. Julien Berro  Is a corresponding author
  1. Yale University, United States
Research Article
  • Cited 1
  • Views 682
  • Annotations
Cite this article as: eLife 2021;10:e62084 doi: 10.7554/eLife.62084

Abstract

During clathrin-mediated endocytosis in eukaryotes, actin assembly is required to overcome large membrane tension and turgor pressure. However, the molecular mechanisms by which the actin machinery adapts to varying membrane tension remain unknown. In addition, how cells reduce their membrane tension when they are challenged by hypotonic shocks remains unclear. We used quantitative microscopy to demonstrate that cells rapidly reduce their membrane tension using three parallel mechanisms. In addition to using their cell wall for mechanical protection, yeast cells disassemble eisosomes to buffer moderate changes in membrane tension on a minute time scale. Meanwhile, a temporary reduction of the rate of endocytosis for 2 to 6 minutes, and an increase in the rate of exocytosis for at least 5 minutes allow cells to add large pools of membrane to the plasma membrane. We built on these results to submit the cells to abrupt increases in membrane tension and determine that the endocytic actin machinery of fission yeast cells rapidly adapts to perform clathrin-mediated endocytosis. Our study sheds light on the tight connection between membrane tension regulation, endocytosis and exocytosis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joël Lemière

    Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuan Ren

    Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Berro

    Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
    For correspondence
    julien.berro@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9560-8646

Funding

National Institute of General Medical Sciences (R01GM115636)

  • Julien Berro

American Cancer Society (IRG 58-012-58)

  • Julien Berro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christophe Lamaze, Institut Curie

Publication history

  1. Received: August 13, 2020
  2. Accepted: May 12, 2021
  3. Accepted Manuscript published: May 13, 2021 (version 1)

Copyright

© 2021, Lemière et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 682
    Page views
  • 215
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Claudio Andrés Carril Pardo et al.
    Research Article

    Restoring damaged b-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study b-cells arising following destruction. We show that most new insulin cells differ from the original b-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to b-cell destruction is fast, efficient and age-independent. Bihormonal cells are transcriptionally close to a subset of d-cells that we identified in control islets and which are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in β-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins+ bihormonal cells following b-cell destruction. Our findings support the conclusion that sst1.1 d-cells possess a pro-b identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Jeffrey Y Lee et al.
    Research Article

    Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.