APOE2 is associated with longevity independent of Alzheimer's disease

  1. Mitsuru Shinohara  Is a corresponding author
  2. Takahisa Kanekiyo
  3. Masaya Tachibana
  4. Aishe Kurti
  5. Motoko Shinohara
  6. Yuan Fu
  7. Jing Zhao
  8. Xianlin Han
  9. Patrick M Sullivan
  10. G William Rebeck
  11. John D Fryer
  12. Michael G Heckman
  13. Guojun Bu  Is a corresponding author
  1. National Center for Geriatrics and Gerontology, Japan
  2. Mayo Clinic, United States
  3. University of Texas Health Science Center at San Antonio, United States
  4. Durham Veterans Health Administration Medical Center's Geriatric Research, United States
  5. Georgetown University Medical Center, United States

Abstract

Although the ε2 allele of apolipoprotein E (APOE2) benefits longevity, its mechanism is not understood. The protective effects of the APOE2 on Alzheimer's disease (AD) risk, particularly through their effects on amyloid or tau accumulation, may confound APOE2 effects on longevity. Herein, we showed that the association between APOE2 and longer lifespan persisted irrespective of AD status, including its neuropathology, by analyzing clinical database as well as animal models. Notably, APOE2 was associated with preserved physical activity during aging, which also associated with lifespan. In animal models, distinct apoE isoform levels, where APOE2 has the highest, were correlated with activity levels, while some forms of cholesterol and triglycerides were associated with apoE and activity levels. These results indicate that APOE2 can contribute to longevity independent of AD. Preserved activity would be an early-observable feature of apoE2-mediated longevity, where higher levels of apoE2 and its-associated lipid metabolism might be involved.

Data availability

All source data files of animal experiments (Figure 2, Figure 4, Supplementary File 1d, and Supplementary File 1f) are included in the manuscript and supporting files. The clinical data are available from NACC (https://www.alz.washington.edu/WEB/researcher_home.html) upon request: distributing any data to a third party, who is not a collaborator or co-authors, is strictly prohibited by NACC.

Article and author information

Author details

  1. Mitsuru Shinohara

    Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Japan
    For correspondence
    shinohara@ncgg.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3045-7338
  2. Takahisa Kanekiyo

    Neuroscience, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Masaya Tachibana

    Neuroscience, Mayo Clinic, Jackosonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Aishe Kurti

    Neuroscience, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Motoko Shinohara

    Neuroscience, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yuan Fu

    Neuroscience, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jing Zhao

    Neuroscience, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xianlin Han

    Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Patrick M Sullivan

    Duke University School of Medicine, Durham Veterans Health Administration Medical Center's Geriatric Research, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. G William Rebeck

    Neuroscience, Georgetown University Medical Center, Washington, DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. John D Fryer

    Neuroscience, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3390-2994
  12. Michael G Heckman

    Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Guojun Bu

    Neuroscience, Mayo Clinic, Jacksonville, United States
    For correspondence
    bu.guojun@mayo.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Aging (RF1AG057181)

  • Guojun Bu

Naito Foundation

  • Mitsuru Shinohara

BrightFocus Foundation

  • Mitsuru Shinohara

National Center for Geriatrics and Gerontology

  • Mitsuru Shinohara

Hori Sciences and Arts Foundation

  • Mitsuru Shinohara

National Institute on Aging (R37AG027924)

  • Guojun Bu

National Institute on Aging (R01AG046205)

  • Guojun Bu

National Institute on Aging (RF1AG051504)

  • Guojun Bu

National Institute on Aging (P01NS074969)

  • Guojun Bu

National Institute on Aging (P30AG062677)

  • Guojun Bu

Cure Alzheimer's Fund

  • Guojun Bu

National Institute on Aging (R21AG052423)

  • Takahisa Kanekiyo

Japan Heart Foundation

  • Mitsuru Shinohara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All cohorts examined in this study were generated from homozygous breeding pairs, group housed without enrichment structures in a specific pathogen-free environment in ventilated cages and used in experiments according to the standards established by the Mayo Clinic Institutional Animal Care and Use Committee (IACUC, Protocol# A58312).

Copyright

© 2020, Shinohara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,390
    views
  • 527
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mitsuru Shinohara
  2. Takahisa Kanekiyo
  3. Masaya Tachibana
  4. Aishe Kurti
  5. Motoko Shinohara
  6. Yuan Fu
  7. Jing Zhao
  8. Xianlin Han
  9. Patrick M Sullivan
  10. G William Rebeck
  11. John D Fryer
  12. Michael G Heckman
  13. Guojun Bu
(2020)
APOE2 is associated with longevity independent of Alzheimer's disease
eLife 9:e62199.
https://doi.org/10.7554/eLife.62199

Share this article

https://doi.org/10.7554/eLife.62199

Further reading

    1. Medicine
    2. Neuroscience
    Emily M Adamic, Adam R Teed ... Sahib Khalsa
    Research Article

    Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a ‘locus of disruption’ for psychiatric disorders.

    1. Medicine
    Yanling Huang, Haocong Mo ... Geyang Xu
    Research Article

    Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.