Biological constraints on GWAS SNPs at suggestive significance thresholds reveal additional BMI loci
Abstract
To uncover novel significant association signals (P<5x10-8), GWAS requires increasingly larger sample sizes to overcome statistical correction for multiple testing. As an alternative, we aimed to identify associations among suggestive signals (5x10-8 ≤ P < 5x10-4) in increasingly powered GWAS efforts using chromatin accessibility and direct contact with gene promoters as biological constraints. We conducted retrospective analyses of three GIANT BMI GWAS efforts using ATAC-seq and promoter-focused Capture C data from human adipocytes and ESC-derived hypothalamic-like neurons. This approach, with its extremely low false positive rate, identified 15 loci at P<5x10-5 in the 2010 GWAS, 13 of which achieved genome-wide significance by 2018, including at NAV1, MTIF3 and ADCY3. 80% of constrained 2015 loci achieved genome-wide significance in 2018. We observed similar results in waist-to-hip ratio analyses. In conclusion, biological constraints on sub-significant GWAS signals can reveal potentially true-positive loci for further investigation in existing datasets without increasing sample size.
Data availability
Adipose ATAC-seq and promoter-focused capture C data is available in GEO under accession number GSE164912Hypothalamic Neuron ATAC-eq and promoter-focused capture C data is the subject of another atlas-based manuscript currently under peer review and through that process that dataset will be made available once the paper is published- the corresponding hypothalamus preprint can be found at: https://www.biorxiv.org/content/10.1101/2020.07.06.146951v1.full
-
Biological constraints on GWAS SNPs at suggestive significance thresholds reveal true BMI lociNCBI Gene Expression Omnibus, GSE164912.
Article and author information
Author details
Funding
Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01-HD056465)
- Struan FA Grant
National Human Genome Research Institute (R01-HG010067)
- Struan FA Grant
Children's Hospital of Philadelphia (Daniel B. Burke Endowed Chair for Diabetes Research)
- Struan FA Grant
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Hammond et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,900
- views
-
- 224
- downloads
-
- 50
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 50
- citations for umbrella DOI https://doi.org/10.7554/eLife.62206