A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing

  1. Yu-Xuan Lu
  2. Jennifer C Regan
  3. Jacqueline Eßer
  4. Lisa F Drews
  5. Thomas Weinseis
  6. Julia Stinn
  7. Oliver Hahn
  8. Richard A Miller
  9. Sebastian Grönke
  10. Linda Partridge  Is a corresponding author
  1. Max Planck Institute for Biology of Ageing, Germany
  2. University College London, United Kingdom
  3. University of Michigan, United States

Abstract

Age-related changes to histone levels are seen in many species. However, it is unclear whether changes to histone expression could be exploited to ameliorate the effects of ageing in multicellular organisms. Here we show that inhibition of mTORC1 by the lifespan-extending drug rapamycin increases expression of histones H3 and H4 post-transcriptionally, through eIF3-mediated translation. Elevated expression of H3/H4 in intestinal enterocytes in Drosophila alters chromatin organization, induces intestinal autophagy through transcriptional regulation, prevents age-related decline in the intestine. Importantly, it also mediates rapamycin-induced longevity and intestinal health. Histones H3/H4 regulate expression of an autophagy cargo adaptor Bchs (WDFY3 in mammals), increased expression of which in enterocytes mediates increased H3/H4-dependent healthy longevity. In mice, rapamycin treatment increases expression of histone proteins and Wdfy3 transcription, and alters chromatin organisation in the small intestine, suggesting the mTORC1-histone axis is at least partially conserved in mammals and may offer new targets for anti-ageing interventions.

Data availability

Sequencing data have been deposited in GEO under accession code GSE148002.

The following data sets were generated

Article and author information

Author details

  1. Yu-Xuan Lu

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6751-5250
  2. Jennifer C Regan

    Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacqueline Eßer

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Lisa F Drews

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Weinseis

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Julia Stinn

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Oliver Hahn

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard A Miller

    University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Grönke

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1539-5346
  10. Linda Partridge

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    Linda.Partridge@age.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9615-0094

Funding

Horizon 2020 Framework Programme (GEROPROTECT project,741989)

  • Linda Partridge

European Molecular Biology Organization (EMBO Long-Term Fellowship,ALTF419-2014)

  • Yu-Xuan Lu

Glenn Foundation for Medical Research

  • Richard A Miller

Max Planck Institute for Biology of Ageing (Open-access funding)

  • Linda Partridge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Weiwei Dang, Baylor College of Medicine, United States

Ethics

Animal experimentation: The work on mice at Michigan was reviewed and approved by the Institutional Animal Care and Use Committee. The original protocol was PRO00008130, approved February 13, 2018. This was renewed as Protocol PRO00009981 on December 7, 2020.

Version history

  1. Received: August 19, 2020
  2. Accepted: May 13, 2021
  3. Accepted Manuscript published: May 14, 2021 (version 1)
  4. Version of Record published: June 8, 2021 (version 2)

Copyright

© 2021, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,778
    views
  • 1,112
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yu-Xuan Lu
  2. Jennifer C Regan
  3. Jacqueline Eßer
  4. Lisa F Drews
  5. Thomas Weinseis
  6. Julia Stinn
  7. Oliver Hahn
  8. Richard A Miller
  9. Sebastian Grönke
  10. Linda Partridge
(2021)
A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing
eLife 10:e62233.
https://doi.org/10.7554/eLife.62233

Share this article

https://doi.org/10.7554/eLife.62233

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.