A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing

  1. Yu-Xuan Lu
  2. Jennifer C Regan
  3. Jacqueline Eßer
  4. Lisa F Drews
  5. Thomas Weinseis
  6. Julia Stinn
  7. Oliver Hahn
  8. Richard A Miller
  9. Sebastian Grönke
  10. Linda Partridge  Is a corresponding author
  1. Max Planck Institute for Biology of Ageing, Germany
  2. University College London, United Kingdom
  3. University of Michigan, United States

Abstract

Age-related changes to histone levels are seen in many species. However, it is unclear whether changes to histone expression could be exploited to ameliorate the effects of ageing in multicellular organisms. Here we show that inhibition of mTORC1 by the lifespan-extending drug rapamycin increases expression of histones H3 and H4 post-transcriptionally, through eIF3-mediated translation. Elevated expression of H3/H4 in intestinal enterocytes in Drosophila alters chromatin organization, induces intestinal autophagy through transcriptional regulation, prevents age-related decline in the intestine. Importantly, it also mediates rapamycin-induced longevity and intestinal health. Histones H3/H4 regulate expression of an autophagy cargo adaptor Bchs (WDFY3 in mammals), increased expression of which in enterocytes mediates increased H3/H4-dependent healthy longevity. In mice, rapamycin treatment increases expression of histone proteins and Wdfy3 transcription, and alters chromatin organisation in the small intestine, suggesting the mTORC1-histone axis is at least partially conserved in mammals and may offer new targets for anti-ageing interventions.

Data availability

Sequencing data have been deposited in GEO under accession code GSE148002.

The following data sets were generated

Article and author information

Author details

  1. Yu-Xuan Lu

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6751-5250
  2. Jennifer C Regan

    Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacqueline Eßer

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Lisa F Drews

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Weinseis

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Julia Stinn

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Oliver Hahn

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard A Miller

    University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Grönke

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1539-5346
  10. Linda Partridge

    Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    Linda.Partridge@age.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9615-0094

Funding

Horizon 2020 Framework Programme (GEROPROTECT project,741989)

  • Linda Partridge

European Molecular Biology Organization (EMBO Long-Term Fellowship,ALTF419-2014)

  • Yu-Xuan Lu

Glenn Foundation for Medical Research

  • Richard A Miller

Max Planck Institute for Biology of Ageing (Open-access funding)

  • Linda Partridge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The work on mice at Michigan was reviewed and approved by the Institutional Animal Care and Use Committee. The original protocol was PRO00008130, approved February 13, 2018. This was renewed as Protocol PRO00009981 on December 7, 2020.

Copyright

© 2021, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,497
    views
  • 1,192
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yu-Xuan Lu
  2. Jennifer C Regan
  3. Jacqueline Eßer
  4. Lisa F Drews
  5. Thomas Weinseis
  6. Julia Stinn
  7. Oliver Hahn
  8. Richard A Miller
  9. Sebastian Grönke
  10. Linda Partridge
(2021)
A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing
eLife 10:e62233.
https://doi.org/10.7554/eLife.62233

Share this article

https://doi.org/10.7554/eLife.62233

Further reading

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Liyi Wang, Shiqi Liu ... Tizhong Shan
    Research Article

    Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.