Translation in amino acid-poor environments is limited by tRNAGln charging
Abstract
An inadequate supply of amino acids leads to accumulation of uncharged tRNAs, which can bind and activate GCN2 kinase to reduce translation. Here, we show that glutamine-specific tRNAs selectively become uncharged when extracellular amino acid availability is compromised. In contrast, all other tRNAs retain charging of their cognate amino acids in a manner that is dependent upon intact lysosomal function. In addition to GCN2 activation and reduced total translation, the reduced charging of tRNAGln in amino acid-deprived cells also leads to specific depletion of proteins containing polyglutamine tracts including core binding factor α1, mediator subunit 12, transcriptional coactivator CBP and TATA-box binding protein. Treating amino acid-deprived cells with exogenous glutamine or glutaminase inhibitors restores tRNAGln charging and the levels of polyglutamine-containing proteins. Together, these results demonstrate that the activation of GCN2 and the translation of polyglutamine-encoding transcripts serve as key sensors of glutamine availability in mammalian cells.
Data availability
High-throughput sequencing data have been deposited in GEO (accession code GSE157276).
-
Translation in amino acid-poor environments is limited by tRNAGln chargingNCBI Gene Expression Omnibus, GSE157276.
Article and author information
Author details
Funding
National Cancer Institute (P30 CA 008748)
- Craig B Thompson
Damon Runyon Cancer Research Foundation (DRG 2234-15)
- Bryan King
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal experiments were conducted in accordance with policies and practices approved by the Memorial Sloan Kettering Cancer Center Institutional Animal Care and Use Committee (IACUC), and were carried out following the NIH guidelines for animal welfare (animal protocol #11-03-007). Every effort was made to minimize suffering.
Reviewing Editor
- Alan G Hinnebusch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States
Publication history
- Received: August 20, 2020
- Accepted: December 7, 2020
- Accepted Manuscript published: December 8, 2020 (version 1)
- Version of Record published: December 16, 2020 (version 2)
Copyright
© 2020, Pavlova et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,857
- Page views
-
- 689
- Downloads
-
- 17
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Neuroscience
Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as ‘gaps’ in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric γ-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.
-
- Biochemistry and Chemical Biology
- Cell Biology
Autophagy is an essential catabolic pathway which sequesters and engulfs cytosolic substrates via autophagosomes, unique double-membraned structures. ATG8 proteins are ubiquitin-like proteins recruited to autophagosome membranes by lipidation at the C-terminus. ATG8s recruit substrates, such as p62, and play an important role in mediating autophagosome membrane expansion. However, the precise function of lipidated ATG8 in expansion remains obscure. Using a real-time in vitro lipidation assay, we revealed that the N-termini of lipidated human ATG8s (LC3B and GABARAP) are highly dynamic and interact with the membrane. Moreover, atomistic MD simulation and FRET assays indicate that N-termini of LC3B and GABARAP associate in cis on the membrane. By using non-tagged GABARAPs, we show that GABARAP N-terminus and its cis-membrane insertion are crucial to regulate the size of autophagosomes in cells irrespectively of p62 degradation. Our study provides fundamental molecular insights into autophagosome membrane expansion, revealing the critical and unique function of lipidated ATG8.