1. Cell Biology
  2. Developmental Biology
Download icon

A Non-stop identity complex (NIC) supervises enterocyte identity and protects from pre-mature aging

  1. Neta Erez
  2. Lena Israitel
  3. Eliya Bitman-Lotan
  4. Wing H Wong
  5. Gal Raz
  6. Dayanne V Cornelio-Parra
  7. Salwa Danial
  8. Na'ama Flint Brodsly
  9. Elena Belova
  10. Oksana Maksimenko
  11. Pavel Georgiev
  12. Todd Druley
  13. Ryan D Mohan PhD
  14. Amir Orian  Is a corresponding author
  1. Technion-Israel Institute of Technology, Israel
  2. Washington University, United States
  3. University of Missouri - Kansas City, United States
  4. Institute of Gene Biology Russian Academy of Sciences, Russian Federation
Research Article
  • Cited 1
  • Views 811
  • Annotations
Cite this article as: eLife 2021;10:e62312 doi: 10.7554/eLife.62312

Abstract

A hallmark of aging is loss of differentiated cell identity. Aged Drosophila midgut differentiated enterocytes (ECs) lose their identity, impairing tissue homeostasis. To discover identity regulators, we performed an RNAi screen targeting ubiquitin-related genes in ECs. Seventeen genes were identified, including the deubiquitinase Non-stop (CG4166). Lineage tracing established that acute loss of Non-stop in young ECs phenocopies aged ECs at cellular and tissue levels. Proteomic analysis unveiled that Non-stop maintains identity as part of a Non-stop identity complex (NIC) containing E(y)2, Sgf11, Cp190, (Mod) mdg4, and Nup98. Non-stop ensured chromatin accessibility, maintaining the EC-gene signature, and protected NIC subunit stability. Upon aging, the levels of Non-stop and NIC subunits declined, distorting the unique organization of the EC nucleus<strong>.</strong> Maintaining youthful levels of Non-stop in wildtype aged ECs safeguards NIC subunits, nuclear organization, and suppressed aging phenotypes. Thus, Non-stop and NIC, supervise EC identity and protects from premature aging.

Data availability

The following sequencing data were deposited: RNAseq and ATAC-seq data are available at NCBI through the Accession number PRJNA657899Link to the the proteomic data set is: The permanent URL to the dataset is: ftp://massive.ucsd.edu/MSV000082625. The data is also accessible from: ProteomeXChange accession: PXD010462 http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD010462. MassIVE | Accession ID: MSV000082625 - ProteomeXchange | Accession ID: PXD010462.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Neta Erez

    Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Lena Israitel

    Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Eliya Bitman-Lotan

    Faculty fo Medicine, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Wing H Wong

    Division of Pediatric Hematology and Oncology, Washington University, Saint-Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gal Raz

    Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Dayanne V Cornelio-Parra

    School of Biological and Chemical Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Salwa Danial

    Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Na'ama Flint Brodsly

    Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Elena Belova

    Genetics, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  10. Oksana Maksimenko

    partment of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  11. Pavel Georgiev

    Genetics, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  12. Todd Druley

    Division of Pediatric Hematology and Oncology, Washington University, Saint-Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Ryan D Mohan PhD

    School of Biological and Chemical Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7624-4605
  14. Amir Orian

    Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
    For correspondence
    mdoryan@tx.technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8521-1661

Funding

NIH NIGMS (5R35GM118068)

  • Ryan D Mohan PhD

CDI (MC-II-2014-363)

  • Todd Druley

Russian Science Foundation (19-74-30026)

  • Pavel Georgiev

Israel Academy of Sciences and Humanities (719/15)

  • Amir Orian

Israel Academy of Sciences and Humanities (318/20)

  • Amir Orian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pankaj Kapahi, Buck Institute for Research on Aging, United States

Publication history

  1. Received: August 21, 2020
  2. Accepted: February 17, 2021
  3. Accepted Manuscript published: February 25, 2021 (version 1)
  4. Version of Record published: March 5, 2021 (version 2)

Copyright

© 2021, Erez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 811
    Page views
  • 141
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Hiroko Katsuno-Kambe et al.
    Research Article Updated

    Epithelial networks are commonly generated by processes where multicellular aggregates elongate and branch. Here, we focus on understanding cellular mechanisms for elongation using an organotypic culture system as a model of mammary epithelial anlage. Isotropic cell aggregates broke symmetry and slowly elongated when transplanted into collagen 1 gels. The elongating regions of aggregates displayed enhanced cell proliferation that was necessary for elongation to occur. Strikingly, this locoregional increase in cell proliferation occurred where collagen 1 fibrils reorganized into bundles that were polarized with the elongating aggregates. Applying external stretch as a cell-independent way to reorganize the extracellular matrix, we found that collagen polarization stimulated regional cell proliferation to precipitate symmetry breaking and elongation. This required β1-integrin and ERK signaling. We propose that collagen polarization supports epithelial anlagen elongation by stimulating locoregional cell proliferation. This could provide a long-lasting structural memory of the initial axis that is generated when anlage break symmetry.

    1. Cell Biology
    2. Neuroscience
    Shahzad S Khan et al.
    Research Advance Updated

    Activating LRRK2 mutations cause Parkinson’s disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.