Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline

  1. Xiaolu Wei  Is a corresponding author
  2. Danna G Eickbush
  3. Iain Speece
  4. Amanda M Larracuente  Is a corresponding author
  1. University of Rochester, United States

Abstract

Large blocks of tandemly repeated DNAs-satellite DNAs (satDNAs)-play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated, however their misregulation is associated with genomic instability and human diseases. We use the Drosophila melanogaster germline as a model to study the regulation of satDNA transcription and chromatin. Here we show that complex satDNAs (>100-bp repeat units) are transcribed into long noncoding RNAs and processed into piRNAs (PIWI interacting RNAs). This satDNA piRNA production depends on the Rhino-Deadlock-Cutoff complex and the transcription factor Moonshiner—a previously-described non-canonical pathway that licenses heterochromatin-dependent transcription of dual-strand piRNA clusters. We show that this pathway is important for establishing heterochromatin at satDNAs. Therefore, satDNAs are regulated by piRNAs originating from their own genomic loci. This novel mechanism of satDNA regulation provides insight into the role of piRNA pathways in heterochromatin formation and genome stability.

Data availability

Sequencing data generated in this study have been deposited in NCBI Sequence Read Archive (SRA) under project accession PRJNA647441. Published sequencing data used in this study are from NCBI SRA database, and the full list of accession numbers can be found in Supplementary File 1.

The following data sets were generated

Article and author information

Author details

  1. Xiaolu Wei

    Biomedical Genetics, University of Rochester, Rochester, United States
    For correspondence
    xiaolu_wei@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9952-3757
  2. Danna G Eickbush

    Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Iain Speece

    Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amanda M Larracuente

    Biology, University of Rochester, Rochester, United States
    For correspondence
    alarracu@bio.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5944-5686

Funding

National Institutes of Health (R35 GM119515)

  • Amanda M Larracuente

University of Rochester (Stephen Biggar and Elisabeth Asaro fellowship)

  • Amanda M Larracuente

University of Rochester (Messersmith Fellowship)

  • Xiaolu Wei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: August 22, 2020
  2. Accepted: July 8, 2021
  3. Accepted Manuscript published: July 13, 2021 (version 1)
  4. Version of Record published: July 29, 2021 (version 2)

Copyright

© 2021, Wei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,768
    Page views
  • 254
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaolu Wei
  2. Danna G Eickbush
  3. Iain Speece
  4. Amanda M Larracuente
(2021)
Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline
eLife 10:e62375.
https://doi.org/10.7554/eLife.62375

Further reading

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Myeongjune Jeon, Goowon Jeong ... Ilha Lee
    Research Article Updated

    To synchronize flowering time with spring, many plants undergo vernalization, a floral-promotion process triggered by exposure to long-term winter cold. In Arabidopsis thaliana, this is achieved through cold-mediated epigenetic silencing of the floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, a cold-induced antisense RNA transcribed from the FLC locus, has been proposed to facilitate FLC silencing. Here, we show that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3′-end of FLC and CRT/DRE-binding factors (CBFs) are required for cold-mediated expression of COOLAIR. CBFs bind to CRT/DREs at the 3′-end of FLC, both in vitro and in vivo, and CBF levels increase gradually during vernalization. Cold-induced COOLAIR expression is severely impaired in cbfs mutants in which all CBF genes are knocked-out. Conversely, CBF-overexpressing plants show increased COOLAIR levels even at warm temperatures. We show that COOLAIR is induced by CBFs during early stages of vernalization but COOLAIR levels decrease in later phases as FLC chromatin transitions to an inactive state to which CBFs can no longer bind. We also demonstrate that cbfs and FLCΔCOOLAIR mutants exhibit a normal vernalization response despite their inability to activate COOLAIR expression during cold, revealing that COOLAIR is not required for the vernalization process.

    1. Chromosomes and Gene Expression
    Qiming Yang, Te-Wen Lo ... Barbara J Meyer
    Research Article

    An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species C. briggsae (Cbr) and C. elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13-bp MEX and 30-bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.