Flagellar energetics from high-resolution imaging of beating patterns in tethered mouse sperm

  1. Ashwin Nandagiri
  2. Avinash Satish Gaikwad
  3. David L Potter
  4. Reza Nosrati
  5. Julio Soria
  6. Moira K O'Bryan
  7. Sameer Jadhav
  8. Ranganathan Prabhakar  Is a corresponding author
  1. IITB-Monash Research Academy/ IIT Bombay/ Monash University, India
  2. University of Melbourne, Australia
  3. Monash University, Australia
  4. IITB-Monash Research Academy, India

Abstract

We demonstrate a technique for investigating the energetics of flagella or cilia. We record the planar beating of tethered mouse sperm at high-resolution. Beating waveforms are reconstructed using Proper Orthogonal Decomposition of the centerline tangent-angle profiles. Energy conservation is employed to obtain the mechanical power exerted by the dynein motors from the observed kinematics. A large proportion of the mechanical power exerted by the dynein motors is dissipated internally by the motors themselves. There could also be significant dissipation within the passive structures of the flagellum. The total internal dissipation is considerably greater than the hydrodynamic dissipation in the aqueous medium outside. The net power input from the dynein motors in sperm from Crisp2-knockout mice is significantly smaller than in wildtype samples, indicating that ion-channel regulation by cysteine-rich secretory proteins (CRISPs) controls energy flows powering the axoneme.

Data availability

Source data files for all results figures have been provided.Videos of the WT and KO mice sperm samples are available for public access and download from the Monash University Research Repository (Ref. 64: DOI: 10.26180/5f50562bb322b)MATLAB Codes used to analyze the data to produce the results in the manuscript are available for public access and download from the Monash University Research Repository (Ref. 64: DOI: 10.26180/14045816}

Article and author information

Author details

  1. Ashwin Nandagiri

    Department of Chemical Engineering, IIT Bombay/Department of Mechanical & Aerospace Engineering, Monash University, IITB-Monash Research Academy/ IIT Bombay/ Monash University, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Avinash Satish Gaikwad

    School of BioSciences, University of Melbourne, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. David L Potter

    Monash Micro-Imaging, Monash University, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Reza Nosrati

    Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1461-229X
  5. Julio Soria

    Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Moira K O'Bryan

    School of BioSciences, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7298-4940
  7. Sameer Jadhav

    Department of Chemical Engineering, IITB-Monash Research Academy, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Ranganathan Prabhakar

    Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Australia
    For correspondence
    prabhakar.ranganathan@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7357-4222

Funding

Australian Research Council (DP190100343)

  • Reza Nosrati
  • Ranganathan Prabhakar

Australian Research Council (DP200100659)

  • Moira K O'Bryan

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR13442/MED/32/440/2015)

  • Sameer Jadhav

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was peformed in strict accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. All of the animals were handled according to institutional animal care and use protocols approved by the Monash Animal Ethics committee (Approval # MARP/2014/084).

Copyright

© 2021, Nandagiri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,612
    views
  • 230
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashwin Nandagiri
  2. Avinash Satish Gaikwad
  3. David L Potter
  4. Reza Nosrati
  5. Julio Soria
  6. Moira K O'Bryan
  7. Sameer Jadhav
  8. Ranganathan Prabhakar
(2021)
Flagellar energetics from high-resolution imaging of beating patterns in tethered mouse sperm
eLife 10:e62524.
https://doi.org/10.7554/eLife.62524

Share this article

https://doi.org/10.7554/eLife.62524

Further reading

    1. Cell Biology
    Fabian Link, Sisco Jung ... Brooke Morriswood
    Research Article

    The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.

    1. Cell Biology
    Georgia Maria Sagia, Xenia Georgiou ... Sofia Dimou
    Research Article Updated

    Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.