1. Cell Biology
  2. Physics of Living Systems
Download icon

Flagellar energetics from high-resolution imaging of beating patterns in tethered mouse sperm

  1. Ashwin Nandagiri
  2. Avinash Satish Gaikwad
  3. David L Potter
  4. Reza Nosrati
  5. Julio Soria
  6. Moira K O'Bryan
  7. Sameer Jadhav
  8. Ranganathan Prabhakar  Is a corresponding author
  1. IITB-Monash Research Academy/ IIT Bombay/ Monash University, India
  2. University of Melbourne, Australia
  3. Monash University, Australia
  4. IITB-Monash Research Academy, India
Research Article
  • Cited 0
  • Views 282
  • Annotations
Cite this article as: eLife 2021;10:e62524 doi: 10.7554/eLife.62524
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

We demonstrate a technique for investigating the energetics of flagella or cilia. We record the planar beating of tethered mouse sperm at high-resolution. Beating waveforms are reconstructed using Proper Orthogonal Decomposition of the centerline tangent-angle profiles. Energy conservation is employed to obtain the mechanical power exerted by the dynein motors from the observed kinematics. A large proportion of the mechanical power exerted by the dynein motors is dissipated internally by the motors themselves. There could also be significant dissipation within the passive structures of the flagellum. The total internal dissipation is considerably greater than the hydrodynamic dissipation in the aqueous medium outside. The net power input from the dynein motors in sperm from Crisp2-knockout mice is significantly smaller than in wildtype samples, indicating that ion-channel regulation by cysteine-rich secretory proteins (CRISPs) controls energy flows powering the axoneme.

Data availability

Source data files for all results figures have been provided.Videos of the WT and KO mice sperm samples are available for public access and download from the Monash University Research Repository (Ref. 64: DOI: 10.26180/5f50562bb322b)MATLAB Codes used to analyze the data to produce the results in the manuscript are available for public access and download from the Monash University Research Repository (Ref. 64: DOI: 10.26180/14045816}

Article and author information

Author details

  1. Ashwin Nandagiri

    Department of Chemical Engineering, IIT Bombay/Department of Mechanical & Aerospace Engineering, Monash University, IITB-Monash Research Academy/ IIT Bombay/ Monash University, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Avinash Satish Gaikwad

    School of BioSciences, University of Melbourne, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. David L Potter

    Monash Micro-Imaging, Monash University, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Reza Nosrati

    Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1461-229X
  5. Julio Soria

    Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Moira K O'Bryan

    School of BioSciences, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7298-4940
  7. Sameer Jadhav

    Department of Chemical Engineering, IITB-Monash Research Academy, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Ranganathan Prabhakar

    Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Australia
    For correspondence
    prabhakar.ranganathan@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7357-4222

Funding

Australian Research Council (DP190100343)

  • Reza Nosrati
  • Ranganathan Prabhakar

Australian Research Council (DP200100659)

  • Moira K O'Bryan

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR13442/MED/32/440/2015)

  • Sameer Jadhav

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was peformed in strict accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. All of the animals were handled according to institutional animal care and use protocols approved by the Monash Animal Ethics committee (Approval # MARP/2014/084).

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: August 27, 2020
  2. Accepted: April 29, 2021
  3. Accepted Manuscript published: April 30, 2021 (version 1)

Copyright

© 2021, Nandagiri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 282
    Page views
  • 55
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    David W Sanders et al.
    Research Article Updated

    Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Asha Mary Joseph et al.
    Research Article Updated

    Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication-independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair (NER), as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner.