Divergence in alternative polyadenylation contributes to gene regulatory differences between humans and chimpanzees
Abstract
While comparative functional genomic studies have shown that inter-species differences in gene expression can be explained by corresponding inter-species differences in genetic and epigenetic regulatory mechanisms, co-transcriptional mechanisms, such as alternative polyadenylation (APA), have received little attention. We characterized APA in lymphoblastoid cell lines from six humans and six chimpanzees by identifying and estimating usage for 44,432 polyadenylation sites (PAS) in 9,518 genes. Although APA is largely conserved, 1,705 genes showed significantly different PAS usage (FDR 0.05) between species. Genes with divergent APA also tend to be differentially expressed, are enriched among genes showing differences in protein translation, and can explain a subset of observed inter-species protein expression differences that do not differ at the transcript level. Finally, we found that genes with a dominant PAS, which is used more often than other PAS, are particularly enriched for differentially expressed genes.
Data availability
Sequencing data available on GEO under accession GSE155245.
Article and author information
Author details
Funding
National Institutes of Health (T32GM09197)
- Briana E Mittleman
National Institutes of Health (F31HL149259)
- Briana E Mittleman
National Institutes of Health (R01HG010772)
- Yoav Gilad
National Institutes of Health (R35GM13172)
- Yoav Gilad
National Institutes of Health (K12HL119995)
- Sebastian Pott
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Mittleman et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,313
- views
-
- 175
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Genetics and Genomics
Tyrosine kinases play a crucial role in cell proliferation and survival and are extensively investigated as targets for cancer treatment. However, the efficacy of most tyrosine kinase inhibitors (TKIs) in cancer therapy is limited due to resistance. In this study, we identify a synergistic combination therapy involving TKIs for the treatment of triple negative breast cancer. By employing pairwise tyrosine kinase knockout CRISPR screens, we identify FYN and KDM4 as critical targets whose inhibition enhances the effectiveness of TKIs, such as NVP-ADW742 (IGF-1R inhibitor), gefitinib (EGFR inhibitor), and imatinib (ABL inhibitor) both in vitro and in vivo. Mechanistically, treatment with TKIs upregulates the transcription of KDM4, which in turn demethylates H3K9me3 at FYN enhancer for FYN transcription. This compensatory activation of FYN and KDM4 contributes to the resistance against TKIs. FYN expression is associated with therapy resistance and persistence by demonstrating its upregulation in various experimental models of drug-tolerant persisters and residual disease following targeted therapy, chemotherapy, and radiotherapy. Collectively, our study provides novel targets and mechanistic insights that can guide the development of effective combinatorial targeted therapies, thus maximizing the therapeutic benefits of TKIs.
-
- Cancer Biology
- Genetics and Genomics
Interpretation of variants identified during genetic testing is a significant clinical challenge. In this study, we developed a high-throughput CDKN2A functional assay and characterized all possible human CDKN2A missense variants. We found that 17.7% of all missense variants were functionally deleterious. We also used our functional classifications to assess the performance of in silico models that predict the effect of variants, including recently reported models based on machine learning. Notably, we found that all in silico models performed similarly when compared to our functional classifications with accuracies of 39.5–85.4%. Furthermore, while we found that functionally deleterious variants were enriched within ankyrin repeats, we did not identify any residues where all missense variants were functionally deleterious. Our functional classifications are a resource to aid the interpretation of CDKN2A variants and have important implications for the application of variant interpretation guidelines, particularly the use of in silico models for clinical variant interpretation.