The connectome of the adult Drosophila mushroom body provides insights into function

  1. Feng Li  Is a corresponding author
  2. Jack W Lindsey
  3. Elizabeth C Marin
  4. Nils Otto
  5. Marisa Dreher
  6. Georgia Dempsey
  7. Ildiko Stark
  8. Alexander S Bates
  9. Markus William Pleijzier
  10. Philipp Schlegel
  11. Aljoscha Nern
  12. Shin-ya Takemura
  13. Nils Eckstein
  14. Tansy Yang
  15. Audrey Francis
  16. Amalia Braun
  17. Ruchi Parekh
  18. Marta Costa
  19. Louis K Scheffer
  20. Yoshi Aso
  21. Gregory SXE Jefferis
  22. Larry F Abbott
  23. Ashok Litwin-Kumar
  24. Scott Waddell
  25. Gerald M Rubin  Is a corresponding author
  1. Howard Hughes Medical Institute, United States
  2. Columbia University, United States
  3. University of Cambridge, United Kingdom
  4. University of Oxford, United Kingdom
  5. MRC Laboratory of Molecular Biology, United Kingdom
  6. Cambridge University, United Kingdom

Abstract

Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory and activity regulation. Here we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.

Data availability

All the primary data used in this study is freely available through a public server (neuprint.janelia.org). All the underlying data behind that server is open source (CC-BY). There is no institutional resource for hosting connectome data. We commit to keeping this available for at least 10 years, and provide procedures where users can copy any or all of it to their own computer. Login is via any Google account; users who wish to remain anonymous can create a separate account for access purposes only.

Article and author information

Author details

  1. Feng Li

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    lif@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
  2. Jack W Lindsey

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0930-7327
  3. Elizabeth C Marin

    Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6333-0072
  4. Nils Otto

    Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Marisa Dreher

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0041-9229
  6. Georgia Dempsey

    Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1854-8336
  7. Ildiko Stark

    Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander S Bates

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1195-0445
  9. Markus William Pleijzier

    Neurobiology Division, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7297-4547
  10. Philipp Schlegel

    Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5633-1314
  11. Aljoscha Nern

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3822-489X
  12. Shin-ya Takemura

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2400-6426
  13. Nils Eckstein

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Tansy Yang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1131-0410
  15. Audrey Francis

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1974-7174
  16. Amalia Braun

    Drosophila Connectomics Group, Department of Zoology, Cambridge University, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Ruchi Parekh

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8060-2807
  18. Marta Costa

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5948-3092
  19. Louis K Scheffer

    Janelia Research Campus,, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3289-6564
  20. Yoshi Aso

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2939-1688
  21. Gregory SXE Jefferis

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0587-9355
  22. Larry F Abbott

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Ashok Litwin-Kumar

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2422-6576
  24. Scott Waddell

    Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4503-6229
  25. Gerald M Rubin

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    rubing@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8762-8703

Funding

Howard Hughes Medical Institute (internal funding)

  • Marisa Dreher
  • Aljoscha Nern
  • Shin-ya Takemura
  • Nils Eckstein
  • Audrey Francis
  • Ruchi Parekh
  • Louis K Scheffer
  • Yoshi Aso
  • Gerald M Rubin

Wellcome Trust (203261/Z/16/Z)

  • Feng Li
  • Elizabeth C Marin
  • Nils Otto
  • Georgia Dempsey
  • Ildiko Stark
  • Philipp Schlegel
  • Tansy Yang
  • Amalia Braun
  • Marta Costa
  • Gregory SXE Jefferis
  • Scott Waddell
  • Gerald M Rubin

Wellcome Trust (200846/Z/16/Z)

  • Scott Waddell

National Science Foundation (NeuroNex DBI-1707398)

  • Jack W Lindsey
  • Larry F Abbott
  • Ashok Litwin-Kumar

Department of Energy (DE-SC0020347)

  • Jack W Lindsey

Medical Research Council (MC-U105188491)

  • Alexander S Bates
  • Markus William Pleijzier
  • Philipp Schlegel
  • Gregory SXE Jefferis

Simons Foundation (SCGB)

  • Jack W Lindsey
  • Yoshi Aso
  • Larry F Abbott
  • Ashok Litwin-Kumar
  • Gerald M Rubin

Burroughs Wellcome Fund (1017109)

  • Ashok Litwin-Kumar

National Institutes of Health (R01EB029858)

  • Ashok Litwin-Kumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,279
    views
  • 2,056
    downloads
  • 298
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Feng Li
  2. Jack W Lindsey
  3. Elizabeth C Marin
  4. Nils Otto
  5. Marisa Dreher
  6. Georgia Dempsey
  7. Ildiko Stark
  8. Alexander S Bates
  9. Markus William Pleijzier
  10. Philipp Schlegel
  11. Aljoscha Nern
  12. Shin-ya Takemura
  13. Nils Eckstein
  14. Tansy Yang
  15. Audrey Francis
  16. Amalia Braun
  17. Ruchi Parekh
  18. Marta Costa
  19. Louis K Scheffer
  20. Yoshi Aso
  21. Gregory SXE Jefferis
  22. Larry F Abbott
  23. Ashok Litwin-Kumar
  24. Scott Waddell
  25. Gerald M Rubin
(2020)
The connectome of the adult Drosophila mushroom body provides insights into function
eLife 9:e62576.
https://doi.org/10.7554/eLife.62576

Share this article

https://doi.org/10.7554/eLife.62576

Further reading

    1. Neuroscience
    Brad K Hulse, Hannah Haberkern ... Vivek Jayaraman
    Research Article Updated

    Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly’s head direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.

    1. Neuroscience
    Philipp Schlegel, Alexander Shakeel Bates ... Gregory S X E Jefferis
    Research Article Updated

    The hemibrain connectome provides large-scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.