1. Neuroscience
Download icon

Information flow, cell types and stereotypy in a full olfactory connectome

  1. Philipp Schlegel
  2. Alexander Shakeel Bates
  3. Tomke Stürner
  4. Sridhar R Jagannathan
  5. Nikolas Drummond
  6. Joseph Hsu
  7. Laia Serratosa Capdevila
  8. Alexandre Javier
  9. Elizabeth C Marin
  10. Asa Barth-Maron
  11. Imaan FM Tamimi
  12. Feng Li
  13. Gerald M Rubin
  14. Stephen M Plaza
  15. Marta Costa
  16. Gregory SXE Jefferis  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. University of Cambridge, United Kingdom
  3. Howard Hughes Medical Institute, United States
  4. Harvard Medical School, United States
  5. Janelia Research Campus, Howard Hughes Medical Institute, United States
Research Article
  • Cited 0
  • Views 431
  • Annotations
Cite this article as: eLife 2021;10:e66018 doi: 10.7554/eLife.66018

Abstract

The hemibrain connectome provides large scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.

Data availability

The hemibrain connectome including our annotations is hosted via neuPrint at https://neuprint.janelia.orgPublished data (neuronal reconstructions and connectivity) from the FAFB EM data set is hosted by Virtual Fly Brain (VFB) at https://catmaid.virtualflybrain.org. A snapshot of the FAFB data used in this study will be shared with VFB prior to publication.Meta data (e.g. neuron classifications, axon-dendrite splits, glomeruli meshes, etc) are included in the manuscript and supporting files.In addition, we maintain Github repositories with meta data (https://github.com/flyconnectome/hemibrain_olf_data) and code examples (https://github.com/flyconnectome/2020hemibrain_examples).

Article and author information

Author details

  1. Philipp Schlegel

    Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5633-1314
  2. Alexander Shakeel Bates

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1195-0445
  3. Tomke Stürner

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4054-0784
  4. Sridhar R Jagannathan

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2078-1145
  5. Nikolas Drummond

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Joseph Hsu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Laia Serratosa Capdevila

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexandre Javier

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Elizabeth C Marin

    Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6333-0072
  10. Asa Barth-Maron

    Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Imaan FM Tamimi

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Feng Li

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6658-9175
  13. Gerald M Rubin

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8762-8703
  14. Stephen M Plaza

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7425-8555
  15. Marta Costa

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5948-3092
  16. Gregory SXE Jefferis

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    jefferis@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0587-9355

Funding

Wellcome Trust (Collaborative Award,203261/Z/16/Z)

  • Philipp Schlegel
  • Tomke Stürner
  • Sridhar R Jagannathan
  • Nikolas Drummond
  • Joseph Hsu
  • Laia Serratosa Capdevila
  • Alexandre Javier
  • Elizabeth C Marin
  • Imaan FM Tamimi
  • Feng Li
  • Gerald M Rubin
  • Marta Costa
  • Gregory SXE Jefferis

European Research Council (Consolidator grant,649111)

  • Laia Serratosa Capdevila
  • Alexandre Javier
  • Gregory SXE Jefferis

Medical Research Council (Core support,MC-U105188491)

  • Alexander Shakeel Bates
  • Gregory SXE Jefferis

National Institutes of Health (BRAIN Initiative grant,1RF1MH120679-01)

  • Philipp Schlegel
  • Tomke Stürner
  • Gregory SXE Jefferis

National Institutes of Health (F31 fellowship,DC016196)

  • Asa Barth-Maron

Boehringer Ingelheim Fonds (PhD Fellowship)

  • Alexander Shakeel Bates

Herchel Smith (Studentship)

  • Alexander Shakeel Bates

National Institutes of Health (R01DC008174)

  • Asa Barth-Maron

Howard Hughes Medical Institute

  • Gerald M Rubin
  • Stephen M Plaza

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Publication history

  1. Received: December 22, 2020
  2. Accepted: May 24, 2021
  3. Accepted Manuscript published: May 25, 2021 (version 1)

Copyright

© 2021, Schlegel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 431
    Page views
  • 127
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Xiaoxuan Jia et al.
    Research Article

    Temporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex. Here we investigated whether plasticity of individual IT neurons underlies human core-object-recognition behavioral changes induced with unsupervised visual experience. We built a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model, after constrained by neurophysiological data, largely predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.

    1. Neuroscience
    Nick Taubert et al.
    Research Article

    Dynamic facial expressions are crucial for communication in primates. Due to the difficulty to control shape and dynamics of facial expressions across species, it is unknown how species-specific facial expressions are perceptually encoded and interact with the representation of facial shape. While popular neural network models predict a joint encoding of facial shape and dynamics, the neuromuscular control of faces evolved more slowly than facial shape, suggesting a separate encoding. To investigate these alternative hypotheses, we developed photo-realistic human and monkey heads that were animated with motion capture data from monkeys and humans. Exact control of expression dynamics was accomplished by a Bayesian machine-learning technique. Consistent with our hypothesis, we found that human observers learned cross-species expressions very quickly, where face dynamics was represented largely independently of facial shape. This result supports the co-evolution of the visual processing and motor control of facial expressions, while it challenges appearance-based neural network theories of dynamic expression recognition.