Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients

  1. Lakshmi E Miller-Vedam
  2. Bastian Bräuning
  3. Katerina D Popova
  4. Nicole T Schirle Oakdale
  5. Jessica L Bonnar
  6. Jesuraj R Prabu
  7. Elizabeth A Boydston
  8. Natalia Sevillano
  9. Matthew J Shurtleff
  10. Robert M Stroud
  11. Charles S Craik
  12. Brenda A Schulman  Is a corresponding author
  13. Adam Frost  Is a corresponding author
  14. Jonathan S Weissman  Is a corresponding author
  1. Molecular, Cellular, and Computational Biophysics Graduate Program, University of California, San Francisco, United States
  2. Department of Biochemistry and Biophysics, University of California, San Francisco, United States
  3. Department of Biology, Whitehead Institute, MIT, United States
  4. Department of Cellular and Molecular Pharmacology, University of California, San Francisco, United States
  5. Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Germany
  6. Biomedical Sciences Graduate Program, University of California, San Francisco, United States
  7. Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
  8. Howard Hughes Medical Institute, United States
10 figures, 3 videos, 2 tables and 6 additional files

Figures

Figure 1 with 9 supplements
Experimental strategy for the dissection of EMC function.

Schematic representation of the combined structural and mutational approach to dissect EMC function. (A) yEMC was purified either by overexpression of all subunits together and affinity pulldown …

Figure 1—figure supplement 1
Purification of yEMC.

(A) Size-exclusion chromatography (SEC) purification of overexpressed yEMC+FAb in DDM detergent micelles. (B) SEC purification of endogenous yEMC + FAb in MSP1D1 nanodisc. (C) Coomassie-stained …

Figure 1—figure supplement 2
Purification of recombinant hEMC.

(A) Size-exclusion chromatography (SEC) purification of hEMC in GDN detergent. (B) SEC purification of hEMC reconstituted in MSP1D1 nanodiscs. (C) Coomassie-stained SDS-PAGE analysis of the SEC …

Figure 1—figure supplement 3
Fluorescent reporter cell line generation.

Fluorescent reporter cell lines were created by introducing lentivirus containing the fluorescently-tagged client reporters into five K562 cells lines: (1) wild type, (2) hEMC1 knockout (3) hEMC2 …

Figure 1—figure supplement 4
Overview of functional assays.

(A) Into each K562 cell line (WT or knockout of respective subunit), fluorescent client reporters were introduced lentivirally. Subsequently, knockout phenotypes were rescued by re-introducing the …

Figure 1—figure supplement 5
Western blots for EMC1 and EMC2.

Western blots of endogenous human EMC subunits and client proteins functional assay to check for complex stability and endogenous protein levels. For each mutant, abundance of several hEMC subunits …

Figure 1—figure supplement 6
Western blots for EMC3 and EMC5.

Human functional assay to check for complex stability. For each mutant, abundance of several EMC subunits as well as several representative client proteins was tested. (A) Western blots for hEMC3 …

Figure 1—figure supplement 7
Amino acid conservation of EMC1.

(A) Yeast (yEMC sequence from uniprot entry for Saccharomyces cerevisiae EMC1, sequence identifier: P25574-1) to human (hEMC sequence from uniprot entry for Homo sapiens EMC1 sequence identifier: …

Figure 1—figure supplement 8
Amino acid conservation of EMC2, EMC3, EMC5.

Yeast to human sequence alignments. (A) Alignment of hEMC2 and yEMC2. Computed by t-Coffee PSI-Coffee homology extension online server. Colored by ClustalX coloring – Blue for hydrophobic (AILMFWV); …

Figure 1—figure supplement 9
Genotyping of 10 mutants.

(A) Sanger sequencing of mutant aligned to wild-type sequence for hEMC1 T82M. (B) Sanger sequencing of mutant aligned to wild-type sequence for hEMC3 E63K+D213K+E223K. (C) Sanger sequencing of …

Figure 2 with 9 supplements
Overall structures of yeast and human EMC.

(A) Cryo-EM structure of yEMC in nanodiscs. Three orthogonal views of the yEMC cryo-EM structure shown as surface rendering. Gray bars delineate the approximate ER membrane boundaries with the …

Figure 2—figure supplement 1
Cryo-EM reconstruction of yEMC.

(A) Representative motion-corrected micrograph for yEMC-FabE in DDM. Scale-bar = 500 Å. (B) Representative motion-corrected micrograph for yEMC-FabH in DDM. Scale-bar = 500 Å. (C–D) Gallery of 2D …

Figure 2—figure supplement 2
Cryo-EM reconstruction of hEMC.

(A) Representative motion-corrected micrograph for hEMC in nanodiscs. Scale-bar = 500 Å. (B) Gallery of 2D classes for the final consensus particle set of hEMC in nanodiscs. (C) Angular distribution …

Figure 2—figure supplement 3
Cryo-EM data processing workflow for yEMC.

(A) Schematic of cryoEM data processing workflow for yEMC+Fab in b-DDM detergent micelles. (B) Schematic of cryoEM data processing workflow for yEMC+Fab in lipid nanodiscs.

Figure 2—figure supplement 4
Cryo-EM data processing workflow for hEMC.

(A) Schematic of cryoEM data processing workflow for hEMC in GDN detergent micelles. (B) Schematic of cryoEM data processing workflow for hEMC in lipid nanodiscs.

Figure 2—figure supplement 5
yEMC cryo-EM map validation.

(A) Final model-to-map FSC curve shown for yEMC in nanodiscs (left) and detergent (right). (B) Consensus yEMC nanodisc density shown superposed on the final yEMC nanodisc model. Three cytoplasmic …

Figure 2—figure supplement 6
hEMC cryo-EM map validation.

(A) Final model-to-map FSC curves shown for hEMC in nanodiscs (left) and detergent (right). (B) Consensus hEMC nanodisc density shown superposed on the final hEMC nanodisc model. Three cytoplasmic …

Figure 2—figure supplement 7
Subunit-subunit correspondence between yEMC and hEMC.

(A–D) EMC models from both human (A,C) and yeast (B,D) in lipid nanodiscs are colored with the same subunit color code, shown in the middle. Both cartoon ribbons and surface rendering are shown in …

Figure 2—figure supplement 8
Comparison between individual yEMC and hEMC subunits.

(A–H) Each panel shows a side-by-side comparison of homologous yeast and human EMC subunits, colored from N- (blue) to C-terminus (red). Schematics above each panel depict domain organization for …

Figure 2—figure supplement 9
Pairwise superposition of EMC structures in the PDB.

Pairwise superpositions between hEMC and yEMC from this work and recently published EMC structures. Alignments were performed with the matchmaker command in ChimeraX, in each case aligning on the …

Figure 3 with 3 supplements
The EMC cytoplasmic domain contains conserved functional interfaces and may engage C-tail-anchored clients directly.

(A) Position of the hEMC cytoplasmic domain relative to the membrane and the rest of the complex. Shown is the surface rendered hEMC structure reconstituted in nanodiscs. (B) EMC2 nucleates a …

Figure 3—figure supplement 1
Flow cytometry for mutations in the EMC cytoplasmic domain.

(A) Mutant hEMC2K125E+R126D+K127E with TMEM97-mCherry, B1AR-mCherry, and mCherry-SQS378-410 cell lines. Image of hEMC ND model displaying the residues mutated. (B) Mutant hEMC2K18A+K21A with …

Figure 3—figure supplement 2
Additional flow cytometry for mutations in the EMC cytoplasmic domain.

(A) Mutant hEMC2R266A+Q269A+R273A with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS378-410 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hEMC2R80E+R81E+K90E+R112…

Figure 3—figure supplement 3
Both EMC8 and EMC9 can be fitted into the hEMC cryo-EM maps.

(A) Superposition of hEMC8 (cryo-EM model, this work) and hEMC9 (X-ray model, PDB code 6Y4L) reveals strong structural homology between the two paralogous hEMC subunits. (B) Central slide through …

The EMC houses two transmembrane cavities with conserved core structures and distinct accessibilities.

(A) Location and composition of the lipid-filled cavity. A zoom-in view on the cavity is shown below, which is composed of EMC1, EMC3, EMC5, and EMC6. Resolved lipid densities from the cryo-EM map …

Figure 5 with 5 supplements
EMC houses an insertase module centered on EMC3 in the gated membrane cavity.

(A) A transmembrane gate anchored in the cytosol and the lumen is a structural hallmark of the EMC gated cavity. Shown is a surface rendering of the hEMC model in lipid nanodiscs with an unresolved …

Figure 5—figure supplement 1
Flow cytometry of gated cavity mutants.

(A) Mutant hEMC1K951A+K957A with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS378-410 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hEMC3R147E with …

Figure 5—figure supplement 2
Additional flow cytometry of gated cavity mutants.

(A) Mutant hEMC3K42A+K43A with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS378-410 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hEMC3K244A+H247A+E249A with …

Figure 5—figure supplement 3
Comparison of EMC3 to YidC-family members.

Structure and sequence comparison between EMC3 and YidC-family proteins. (A) Side-by-side structure view of human EMC3, yeast EMC3, E. coli YidC, and M. jannaschii YidC-like protein. hEMC3 and yEMC …

Figure 5—figure supplement 4
Resolved lipid densities in hEMC and yEMC nanodisc maps.

(A) Resolved lipids in the hEMC gated cavity. Left: The hEMC model is shown as surface rendering, colored by molecular lipophilicity potential (mint = hydrophilic, gold = hydrophobic). Black mesh …

Figure 5—figure supplement 5
Comparison of gate conformations.

(A) Comparison of gate helix conformations across hEMC and yEMC structures. In each panel, the model of hEMC in nanodiscs is shown as ribbons (color-coded as elsewhere in the manuscript). Cryo-EM …

Figure 6 with 2 supplements
A lipid-filled cavity in the EMC transmembrane domain stabilizes disparate client proteins.

(A) An EMC1 amphipathic brace helix delineates the boundary of the lipid-filled transmembrane cavity and packs against EMC5. Shown is a surface rendering of the hEMC model in nanodiscs. EMC4, EMC5, …

Figure 6—figure supplement 1
Flow cytometry of lipid-filled cavity mutants.

(A) Mutant hEMC5K7E with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS378-410 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hEMC5K7A with TMEM97-mCherry, …

Figure 6—figure supplement 2
Additional flow cytometry of lipid-filled cavity mutants.

(A) Mutant hEMC5F22L with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS378-410 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hEMC1M483A+R487H+Q491N with …

Figure 7 with 3 supplements
The large EMC lumenal domain is the site for several annotated disease mutations.

(A) Two views of the hEMC nanodisc structure. Two beta propellers are present in EMC1, one proximal to the membrane and one distal. (B) EMC1 is the largest EMC subunit and differs in size between …

Figure 7—figure supplement 1
Conformational heterogeneity of the hEMC lumenal domain between detergent and nanodisc maps.

(A) Superposition of hEMC in detergent (green) and nanodiscs (color-coded). Models were aligned on hEMC2 (cytoplasm) and hEMC5 (transmembrane), revealing a rotation of the lumenal domain. (B) …

Figure 7—figure supplement 2
Flow cytometry of lumenal domain mutants.

(A) Mutant hEMC1G471R with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS378-410 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hEMC1A144T with TMEM97-mCherry, …

Figure 7—figure supplement 3
Additional flow cytometry of lumenal domain mutants.

(A) Mutant hEMC1T82A with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS378-410 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hEMC1R76D+K80D with TMEM97-mCherry, …

Model of coordinated EMC functions.

(A) Model of EMC insertase function for a C-lumenal tail-anchored client. Cytosolic factors bring post-translationally localized clients to the ER. Then the client engages the EMC cytoplasmic …

Client reporters.
hEMC subunit mutation construct design.

Videos

Video 1
hEMC mutagenesis displayed on hEMC structures.

Three identical copies of hEMC in nanodisc (colored blue) are displayed here. Subsequent labeling and coloring of mutated residues by flow cytometric measure of reporter abundance, grouped into …

Video 2
EMC transmembrane cavity gate conformations.

Overview of hEMC colored and labeled by subunit. Volume fades away to hEMC nanodisc model. hEMC nanodisc model remains constant as segmented maps of the unassigned gate helices are shown of hEMC …

Video 3
hEMC lumenal domain differences between nanodisc and detergent models.

Overview of hEMC nanodisc model colored and labeled by subunit. Structural landmarks are labeled. hEMC detergent model (colored gray) fades in and both models rotate. As the models rotate several …

Tables

Table 1
Cryo-EM data acquisition, reconstruction, and model refinement statistics.
yEMC in detergent dataset 1yEMC in detergent dataset 2yEMC in nanodiscshEMC in detergenthEMC in nanodiscs
EMDB accession codeEMD-23033EMD-23003EMD-11733EMD-11732
PDB accession codePDB-7KTXPDB-7KRAPDB-7ADPPDB-7ADO
Data collection and processing
MicroscopeFEI Technai PolaraFEI Titan KriosFEI Titan KriosFEI Titan KriosFEI Titan Krios
CameraGatan K2 SummitGatan K2 SummitGatan K3Gatan K3Gatan K3
Magnification31,000x22,500x105,000x81,000x105,000x
Voltage (kV)300300300300300
Electron exposure (e-2)56.858.3676272
Defocus range (µm)−1.0 to −3.0−1.0 to −3.0−0.8 to −2.50.7–2.80.7–2.8
Pixel size (Å)1.221.310.8531.0940.8512
SoftwareRelion 2.0, Relion 3.0, THUNDERRelion 2.0, Relion 3.0, THUNDERRelion 3.0, cryoSPARC v2Relion 3.0, cryoSPARC v2Relion 3.0, cryoSPARC v2
Symmetry imposedC1C1C1C1C1
Initial particle images (no.)419,907670,0786,100,0003,350,0005,900,000
Final particle images (no.)83,599170,186230,528144,222177,560
Overall map resolution (Å)87
FSC threshold 0.1434.3 (combined)3.23.603.39
Local map resolution range (Å)3.6–6.42.6–6.42.8–6.03.0–7.2
Refinement
SoftwarePhenix 1.18 real-space-refinePhenix 1.18 real-space-refinePhenix 1.18 real-space-refinePhenix 1.18 real-space-refine
Model resolution (Å)
FSC threshold 0.54.53.53.93.6
Map sharpening B factor (Å2)−125−75−115−126
Model composition
Non-hydrogen atoms17,31517,29315,04016,652
Protein residues2171216418802086
LigandsNAG: 6NAG: 5; PCW: 1NAG: 2NAG: 4; PCW: 5
B factors (Å2)
Protein (mean)167107111126
Ligand (mean)14692107127
R.m.s. deviations
Bond lengths (Å)0.0060.0050.0050.005
Bond angles (°)0.9880.8040.7180.782
Validation
MolProbity score1.441.291.461.28
Clashscore8.13.596
Ramachandran plot
Favored (%)98979797
Allowed (%)2333
Disallowed (%)0000
Key resources table
Reagent type (species)
or resource
DesignationSource or referenceIdentifiersAdditional information
Gene (Homo sapiens)hEMC1NIH Mammalian
Gene Collection
NCBI: BC034589
Gene (Homo sapiens)hEMC2NIH Mammalian
Gene Collection
NCBI: BC021667
Gene (Homo sapiens)hEMC3NIH Mammalian
Gene Collection
NCBI: BC022807
Gene (Homo sapiens)hEMC4Genestrand
(Eurofins, Germany)
Uniprot: Q5J8M3-1
Gene (Homo sapiens)hEMC5NIH Mammalian
Gene Collection
NCBI: BC033588
Gene (Homo sapiens)hEMC6NIH Mammalian
Gene Collection
NCBI: BC001409
Gene (Homo sapiens)hEMC7NIH Mammalian
Gene Collection
NCBI: BC104936
Gene (Homo sapiens)hEMC8NIH Mammalian
Gene Collection
NCBI: BC020250
Gene (Homo sapiens)hEMC9NIH Mammalian
Gene Collection
NCBI: BC002491
Gene (Homo sapiens)hEMC10Genestrand
(Eurofins, Germany)
Uniprot: Q5UCC4-1
Gene
(Saccharomyces cerevisiae)
yEMC1UniprotUniprot: P25574
Gene
(Saccharomyces cerevisiae)
yEMC2UniprotUniprot: P47133
Gene
(Saccharomyces cerevisiae)
yEMC3UniprotUniprot: P36039
Gene
(Saccharomyces cerevisiae)
yEMC4UniprotUniprot: P53073
Gene
(Saccharomyces cerevisiae)
yEMC5UniprotUniprot: P40540
Gene
(Saccharomyces cerevisiae)
yEMC6UniprotUniprot: Q12431
Gene
(Saccharomyces cerevisiae)
yEMC7UniprotUniprot: P39543
Gene
(Saccharomyces cerevisiae)
yEMC10UniprotUniprot: Q12025
Recombinant DNA reagentpX458AddgenepX458
Recombinant DNA reagentpKDP041This study; available from
the Weissman Lab
Cas9-sfGFP-
EMC5 sgRNA3
single guide KO system
targeting EMC5 gene
Recombinant DNA reagentpKDP077This study; available from
the Weissman Lab
Cas9-sfGFP-EMC1_
sgRNA3_sgRNA4
dual guide KO system
targeting EMC1 gene
Recombinant DNA reagentpKDP080This study; available from
the Weissman Lab
Cas9-sfGFP-EMC2_
sgRNA4_sgRNA5
dual guide KO system
targeting EMC2 gene
Recombinant DNA reagentpKDP083This study; available from
the Weissman Lab
Cas9-sfGFP-EMC3_
sgRNA1_sgRNA2
dual guide KO system
targeting EMC3 gene
Recombinant DNA reagentpKDP119This study; available from
the Weissman Lab
SFFV-insert site-
IRES-Puro-P2A-BFP
parental vector
Recombinant DNA reagentpKDP121This study; available from
the Weissman Lab
pTwist+Lenti+SFFV+
EMC1+IRES+Puro+
P2A+BFP+WPRE
EMC1 covering plasmid
Recombinant DNA reagentpKDP122This study; available from
the Weissman Lab
pTwist+Lenti+SFFV+
EMC3+IRES+Puro+
P2A+BFP+WPRE
EMC3 covering plasmid
Recombinant DNA reagentpKDP124This study; available from
the Weissman Lab
pTwist+Lenti+SFFV+
EMC5+IRES+Puro+
P2A+BFP+WPRE
EMC5 covering plasmid
Recombinant DNA reagentpKDP125This study; available from
the Weissman Lab
pTwist+Lenti+SFFV+
EMC2+IRES+Puro+
P2A+BFP+WPRE
EMC2 covering plasmid
Recombinant DNA reagentpKDP110This study; available from
the Weissman Lab
bAR1_mCherry_
P2A_GFP
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP111This study; available from
the Weissman Lab
TMEM97_mCherry_
P2A_GFP
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP136This study; available from
the Weissman Lab
GFP_P2A_mCherry_
SQS_TMD_opsintag
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_D31K
Twist; available from
the Weissman Lab
hsEMC1_mut_D31KSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_R69D
Twist; available from
the Weissman Lab
hsEMC1_mut_R69DSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_G71S
Twist; available from
the Weissman Lab
hsEMC1_mut_G71SSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_
hsEMC1_mut_
R76D_K80D
Twist; available from
the Weissman Lab
hsEMC1_mut_
R76D_K80D
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_T82M
Twist; available from
the Weissman Lab
hsEMC1_mut_T82MSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_T82A
Twist; available from
the Weissman Lab
hsEMC1_mut_T82ASee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_A144T
Twist; available from
the Weissman Lab
hsEMC1_mut_A144TSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_H93D_E138D_N282K
Twist; available from
the Weissman Lab
hsEMC1_mut_H93D_
E138D_N282K
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_R275E_R404E
Twist; available from
the Weissman Lab
hsEMC1_mut_
R275E_R404E
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_G471R
Twist; available from
the Weissman Lab
hsEMC1_mut_G471RSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_F473Y_R487K
Twist; available from
the Weissman Lab
hsEMC1_mut_
F473Y_R487K
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_M483A_
R487H_Q491N
Twist; available from
the Weissman Lab
hsEMC1_mut_M483A_
R487H_Q491N
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_G868R
Twist; available from
the Weissman Lab
hsEMC1_mut_G868RSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_R881C
Twist; available from
the Weissman Lab
hsEMC1_mut_R881CSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC1_
mut_K951A_K957A
Twist; available from
the Weissman Lab
hsEMC1_mut_
K951A_K957A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_
mut_K18A_K21A
Twist; available from
the Weissman Lab
hsEMC2_mut_
K18A_K21A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_
mut_R80A_R81A_
K90A_R112A
Twist; available from
the Weissman Lab
hsEMC2_mut_R80A_
R81A_K90A_R112A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_
mut_K125E_R126D_K127E
Twist; available from
the Weissman Lab
hsEMC2_mut_K125E_
R126D_K127E
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_
mut_N137A_N167A
Twist; available from
the Weissman Lab
hsEMC2_mut_
N137A_N167A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_
mut_E146A_E149A_Q150A
Twist; available from
the Weissman Lab
hsEMC2_mut_E146A_
E149A_Q150A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_
mut_E168A_D170A_K173A
Twist; available from
the Weissman Lab
hsEMC2_mut_E168A_
D170A_K173A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_
mut_E206A_E209A_D252A
Twist; available from
the Weissman Lab
hsEMC2_mut_E206A_
E209A_D252A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_
mut_K248E_D252K_K255E
Twist; available from
the Weissman Lab
hsEMC2_mut_K248E_
D252K_K255E
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_mut_
R266A_Q269A_R273A
Twist; available from
the Weissman Lab
hsEMC2_mut_R266A_
Q269A_R273A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC2_mut_
Q269A_E286A_E290A
Twist; available from
the Weissman Lab
hsEMC2_mut_Q269A_
E286A_E290A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_WTTwist; available from
the Weissman Lab
hsEMC3_WTSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_D9A
Twist; available from
the Weissman Lab
hsEMC3_mut_D9ASee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_R13E
Twist; available from
the Weissman Lab
hsEMC3_mut_R13ESee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_K42A_K43A
Twist; available from
the Weissman Lab
hsEMC3_mut_
K42A_K43A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_E63K_D213K_E223K
Twist; available from
the Weissman Lab
hsEMC3_mut_E63K_
D213K_E223K
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_K70Y
Twist; available from
the Weissman Lab
hsEMC3_mut_K70YSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_V118A_I122A
Twist; available from
the Weissman Lab
hsEMC3_mut_
V118A_I122A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_N114D_N117D
Twist; available from
the Weissman Lab
hsEMC3_mut_
N114D_N117D
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_R180A
Twist; available from
the Weissman Lab
hsEMC3_mut_R180ASee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_R59E_R62E_K216E
Twist; available from
the Weissman Lab
hsEMC3_mut_R59E_
R62E_K216E
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_R147E
Twist; available from
the Weissman Lab
hsEMC3_mut_R147ESee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_F148L
Twist; available from
the Weissman Lab
hsEMC3_mut_F148LSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_M151L
Twist; available from
the Weissman Lab
hsEMC3_mut_M151LSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_I186V_I182V
Twist; available from
the Weissman Lab
hsEMC3_mut_
I186V_I182V
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC3_
mut_K244A_
H247A_E249A
Twist; available from
the Weissman Lab
hsEMC3_mut_K244A_
H247A_E249A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_WTTwist; available from
the Weissman Lab
hsEMC5_WTSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_A18L
Twist; available from
the Weissman Lab
hsEMC5_mut_A18LSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_D44K
Twist; available from
the Weissman Lab
hsEMC5_mut_D44KSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_D82A_R85A
Twist; available from
the Weissman Lab
hsEMC5_mut_
D82A_R85A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_F22L
Twist; available from
the Weissman Lab
hsEMC5_mut_F22LSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_E75A
Twist; available from
the Weissman Lab
hsEMC5_mut_E75ASee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_H19L_S23A_Q26L
Twist; available from
the Weissman Lab
hsEMC5_mut_H19L_
S23A_Q26L
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_K7A
Twist; available from
the Weissman Lab
hsEMC5_mut_K7ASee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_K7E
Twist; available from
the Weissman Lab
hsEMC5_mut_K7ESee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_R28A_R32A
Twist; available from
the Weissman Lab
hsEMC5_mut_
R28A_R32A
See Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_I63L
Twist; available from
the Weissman Lab
hsEMC5_mut_I63LSee Supplementary file 5 for sequence
Recombinant DNA reagentpKDP119_hsEMC5_
mut_F90A
Twist; available from
the Weissman Lab
hsEMC5_mut_F90ASee Supplementary file 5 for sequence
AntibodyMouse GAPDH
Primary Antibody
Abcamab8245See Supplementary file 5 for sequence
AntibodyRabbit TMEM97 primaryThermoFisher ScientificPA-23003
AntibodyRabbit FDFT1
Primary Antibody
Abcamab195046
AntibodyRat BAP31
Primary Antibody
ThermoFisher ScientificMA3-002
AntibodyRabbit (KIAA0090) EMC1
primary antibody
Abcamab242112
AntibodyRabbit TTC35 (EMC2)
primary antibody
Proteintech25443–1-AP
AntibodyRabbit TM111 (EMC3)
primary antibody
ThermoFisher Scientific#711771
AntibodyRabbit EMC4
primary antibody
Abcamab184544
AntibodyRabbit MMGT1 (EMC5)
primary antibody
Bethyl LaboratoriesA305-833A-M
AntibodyRabbit (C19orf63) EMC10
primary antibody
Abcamab180148
AntibodyIRDye 800CW Goat
anti-Mouse IgG
Secondary Antibody
LI-COR Biosciences925–32210
AntibodyIRDye 800CW Goat
anti-Rabbit IgG
Secondary Antibody
LI-COR Biosciences926–32211
Peptide,
recombinant protein
Fab DE4This study; available from
the Weissman Lab
LMV83LFAIPLVVPFYSHSALDVVMTQSPLSLPV
TPGEPASISCRSSQTLMNRNGNNFLDW
YVQKPGQSPQLLIYLGSNRAPGVPDRFS
GSGSGTDFTLKISRLEVEDVGVYYCMQA
LQTPRTFGQGTKVEIKRTVAAPSVFIFPP
SDEQLKSGTASVVCLLNNFYPREAKVQW
KVDNALQSGNSQESVTEQDSKDSTYSLS
STLTLSKADYEKHKVYACEVTHQGLSSP
VTKSFNRGEC--
MAQVQLQQWGAGLLKPSETLSLTCAVYG
GSFSGYYWSWIRQPPGKGLEWIGEINHS
GSTNYNPSLKSRVTISVDTSKKQFSLKLS
SVTAADTAVYYCARFSYYGSGIYWGQGTL
VTVSSASTKGPSVFPLAPSSKSTSGGTAA
LGCLVKDYFPEPVTVSWNSGALTSGVHT
FPAVLQSSGLYSLSSVVTVPSSSLGTQTYI
CNVNHKPSNTKVDKKVEPKSCAAAHHH
HHHGAAEQKLISEEDLNGAA-
Peptide,
recombinant protein
Fab DH4This study; available
from the Weissman Lab
LMV82LFAIPLVVPFYSHSALDVVMTQSPLSLPV
TPGEPASISCRSSQTLMNRNGNNFLDW
YLQKPGQSPQLLIYLGSNRAPGVPDRFS
GSGSGTDFTLRISRVEPEDVGVYYCMQA
LQTPSFGGGTKVEIRRTVAAPSVFIFPPS
DEQLKSGTASVVCLLNNFYPREAKVQW
KVDNALQSGNSQESVTEQDSKDSTYSL
SSTLTLSKADYEKHKVYACEVTHQGLSS
PVTKSFNRGEC--
MAQVQLQQWGAGLLKPSETLSLTCAVY
GGSFSGYYWSWIRQPPGKGLEWIGEIN
HSGSTNYNPSLKSRVTISVDTSKNQFSL
KLSSVTAADTAVYYCARGLAGRGYYGSG
SYLRWGQGTLVTVSSASTKGPSVFPLAP
SSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVV
TVPSSSLGTQTYICNVNHKPSNTKVDK
KVEPKSCAAAHHHHHHGAAE
QKLISEEDLNGAA-
Commercial assay or kitSuperose 6,
10/300 GL
GE Healthcare17517201
Commercial assay or kitR1.2/1.3 200 and
300 mesh Cu
holey carbon grids
Quantifoil1210627
Commercial assay or kitBL21 Gold Star
competent cells
InvitrogenC602003
Commercial assay or kitAnti-Flag agarose
beads
MilliporeA2220
Commercial assay or kitEconoPac
Chromatography
Columns
Biorad7321010
Commercial assay or kit100 KD MWEMD MilliporeUFC810024
Commercial assay or kitSuperose 6,
10/300 GL
Cytiva29-0915-96
Commercial assay or kitcOmplete EDTA-free
Protease
Inhibitor Cocktail
Rochecatalog No.
05056489001
Commercial assay or kitBio-BeadsBiorad1523920
Commercial assay or kitR1.2/1.3 200 and 300
mesh Cu holey
carbon grids
Quantifoil1210627
Commercial assay or kitUltrathin Carbon Film on
Lacey Carbon Support
Film, 400 mesh, Copper
Ted Pella#01824
Chemical compound, drugFuGENE HD
transfection reagent
PromegaE2312
Chemical compound, drug1-Palmitoyl-2-oleoyl-sn-
glycero-3-PC (POPC)
Cayman Chemical15102
Chemical compound, drugGlyco-diosgenin (GDN)AnatraceGDN101
Chemical compound, drugyeast extract totalAvanti Polar Lipids190000 P-100mg
Chemical compound, drugCholesteryl
Hemisuccinate Tris Salt
AnatraceCH210 5 GM
Chemical compound, drugb-DDMAnatraceD310
Chemical compound, drugIPTGGoldBioI2481C5
Chemical compound, drugEX-CELL 420
Serum-Free Medium
Sigma-Aldrich14420 C
Chemical compound, drugFreeStyle 293
Expression Medium
Thermo fischer12338018
Cell line (Homo sapiens)HEK293S GnTI-ATCCCRL-3022Mycoplasma negative
Cell line
(Spodoptera frugiperda)
Sf9Thermo Fischer11496015
Cell line (Homo sapiens)K562 crispriGilbert et al., 2014K562 crispri
Strain, strain background
Saccharomyces cerevisiae
Overexpressed EMC
with yEMC5-linker-
TEV-linker-3xFlag
This study; available
from the Weissman Lab
LMV84BY4743 ---- MATa/alpha,
his3∆0/his3∆0, leu2∆0/leu2∆0,
LYS2/lys2∆0, met15∆0/MET15,
ura3∆0/ura3∆0, emc1::NatMX::
TEF2pr-EMC1/EMC1, emc3::
KanMX::TEF2pr-EMC3/EMC3,
emc4::his3(CG)::TEF2pr-EMC4/
EMC4, sop4::HphMx::TEF2pr-
SOP4/SOP4, EMC2/emc2::NatMX::
TEF2pr-EMC2, emc5::EMC5-TEV-
3xFLAG::ura3(KL)/emc5::his3(CG)::
TEF2pr-EMC5-TEV-3xFLAG::KanMX,
EMC6/emc6::HphMX::TEF2pr-EMC6,
YDR056c/ydr056c::leu2(CG)::
TEF2pr-ydr056c
Strain, strain background
Saccharomyces cerevisiae
Endogenous yEMC5-
linker-TEV-linker-3xFlag
This study; available
from the Weissman Lab
LMV85W303 ---- EMC5-3xF:ura - Linker-TEV-
linker-3xFlag (GGSGSGENLYFQSGSGS
DYKDDDDKDYKDDDDKDYKDDDDK)
Software, algorithmCryoSPARC
version 2.12.4.
Punjani et al., 2017RRID:SCR_016501
Software, algorithmUCSF ChimeraX
Version 1.0
Goddard et al., 2018RRID:SCR_015872
Software, algorithmPHENIX Version 1.17Adams et al., 2011;RRID:SCR_014224
Software, algorithmCoot Version 0.8Emsley et al., 2010RRID:SCR_014222
Software, algorithmRELION 3.1Kimanius et al., 2016; Zivanov et al., 2018http://www2.mrclmb.cam.ac.uk/relion
Software, algorithmSerialEMMastronarde, 2005RRID:SCR_017293

Additional files

Supplementary file 1

Mass spectrometry analysis on purified hEMC.

SEC purified hEMC in detergent (sheet 1) or nanodiscs (sheet 2) were subjected to tryptic digestion and mass spectrometry. The tables list identified proteins sorted by iBAQ score (descending order). EMC subunits are highlighted in yellow.

https://cdn.elifesciences.org/articles/62611/elife-62611-supp1-v3.xlsx
Supplementary file 2

Statistical significance values for flow cytometry data.

Table listing p-values for membrane controls (Sheet 1; relates to Figure 1—figure supplement 3) and flow cytometry for each of the three client reporters (Sheets 2, 3 and 4; relates to Main Figures 3 and 57 and figures supplements to those figures).

https://cdn.elifesciences.org/articles/62611/elife-62611-supp2-v3.xlsx
Supplementary file 3

Comparison of EMC point mutant effects on client proteins.

Table listing point mutagenesis performed on hEMC and yEMC and assayed against different client types.

https://cdn.elifesciences.org/articles/62611/elife-62611-supp3-v3.xlsx
Supplementary file 4

Uncropped western blots.

Blots provided here without cropping, related to Figure 1—figure supplements 56.

https://cdn.elifesciences.org/articles/62611/elife-62611-supp4-v3.zip
Supplementary file 5

Plasmid sequences for hEMC mutants and reporters.

Table listing sequences of point mutagenesis plasmids used in the hEMC functional assay in this study.

https://cdn.elifesciences.org/articles/62611/elife-62611-supp5-v3.xlsx
Transparent reporting form
https://cdn.elifesciences.org/articles/62611/elife-62611-transrepform-v3.pdf

Download links